Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-20T07:20:49.157Z Has data issue: false hasContentIssue false

Synthesis of aligned carbon nanotubes in organic liquids

Published online by Cambridge University Press:  31 January 2011

Yafei Zhang
Affiliation:
Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Corporation (JST), c/o National Institute for Materials Science (NIMS), 1–1 Namiki, Tsukuba, Ibaraki 305–0044, Japan
Mikka N.-Gamo
Affiliation:
Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Corporation (JST), c/o National Institute for Materials Science (NIMS), 1–1 Namiki, Tsukuba, Ibaraki 305–0044, Japan, and Institute of Applied Physics and Center for Tsukuba Advanced Research Alliance, University of Tsukuba, 1–1–1 Tennoda, Tsukuba, Ibaraki 305–8577, Japan
Kiyoharu Nakagawa
Affiliation:
National Institute for Materials Science (NIMS), 1–1 Namiki, Tsukuba, Ibaraki 305–0044, Japan
Toshihiro Ando
Affiliation:
Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Corporation (JST), c/o National Institute for Materials Science (NIMS), 1–1 Namiki, Tsukuba, Ibaraki 305–0044, Japan
Get access

Abstract

A simple and novel method was developed for efficient synthesis of aligned multiwalled carbon nanotubes (CNTs) in methanol and ethanol under normal pressure. The CNTs' alignment and structures were investigated using Raman scattering and x-ray diffraction spectroscopy. A unique kind of coupled CNT was synthesized in which one rotated to the left and one rotated to the right. Chains periodically bridged the coupled CNTs. The growth mechanism of the CNTs within organic liquid is proposed to be a catalytic process at the Fe film surface in a dynamic and thermal nonequilibrium condition in organic liquids.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Iijima, S., Nature 354, 56 (1991).CrossRefGoogle Scholar
2.Ebbesen, T.W. and Ajayan, P.M., Nature 358, 220 (1992).CrossRefGoogle Scholar
3.Jose-Yacaman, M., Miki-Yoshida, M., Rendon, L., Santiesteban, J.G., Appl. Phys. Lett. 62, 657 (1993).CrossRefGoogle Scholar
4.Amelinckx, S., Zhang, X.B., Bernaerts, D., Zhang, X.F., Ivanov, V., and Nagy, J.B., Science 265, 635 (1994).CrossRefGoogle Scholar
5.Pan, Z.W., Xie, S.S., Chang, B.H., Wang, C.Y., Lu, L., Liu, W., Zhou, W.Y., Li, W.Z., and Qian, L.X., Nature 394, 299 (1998).CrossRefGoogle Scholar
6.Hsu, W.K., Hare, J.P., Terrones, M., Kroto, H.W., Walton, D.R.M., and Harris, P.J.F., Nature 377, 687 (1995).CrossRefGoogle Scholar
7.Hsu, W.K., Terrones, M., Hare, J.P., Kroto, H.W., Walton, D.R.M., and Terrones, H., Chem. Phys. Lett. 262, 161 (1996).CrossRefGoogle Scholar
8.Kusunoki, M., Rokkaku, M., and Suzuki, T., Appl. Phys. Lett. 71, 2620 (1997).CrossRefGoogle Scholar
9.Takikawa, H., Miyano, R., Yatsuki, M., and Sakakibara, T., Jpn. J. Appl. Phys. 37, L187 (1998).CrossRefGoogle Scholar
10.Zhang, Q., Yoon, S.F., Ahn, J., Gan, B., Rusli, and M-B. Yu, J. Phys. Chemi. Solids, 61, 1179 (2000).CrossRefGoogle Scholar
11.Kastner, J., Pichler, T., Kuzmany, H., Curran, S., Blau, W., Weldon, D.N., Dlelamesiere, M., Draper, S., and Zandbergen, H., Chem. Phys. Lett. 211, 53 (1994).CrossRefGoogle Scholar
12.Cao, A.U., Xu, C.L., Liang, J., Wu, D.H., and Wei, B.Q., Chem. Phys. Lett. 344, 13 (2001).CrossRefGoogle Scholar
13.Hunga, W-H. and Bernasek, S.L., Surf. Sci. 346, 165 (1996).CrossRefGoogle Scholar
14.Rufaela, T. S., Batteasa, J.D., and Friend, C.M., Surf. Sci. 384, 156 (1997).CrossRefGoogle Scholar
15.Ajayan, P.M. and Iijima, S., Nature 361, 333 (1993).CrossRefGoogle Scholar