Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-20T00:30:23.416Z Has data issue: false hasContentIssue false

Synthesis and formation mechanism of hollow carbon spheres encapsulating magnetite nanocrystals

Published online by Cambridge University Press:  31 January 2011

Boyang Liu
Affiliation:
Institute for Advanced Ceramics, Harbin Institute of Technology, Harbin 150001, China
Dechang Jia*
Affiliation:
Institute for Advanced Ceramics, Harbin Institute of Technology, Harbin 150001, China
Haibo Feng
Affiliation:
Institute for Advanced Ceramics, Harbin Institute of Technology, Harbin 150001, China
Qingchang Meng
Affiliation:
Institute for Advanced Ceramics, Harbin Institute of Technology, Harbin 150001, China
Yingfeng Shao
Affiliation:
Institute for Advanced Ceramics, Harbin Institute of Technology, Harbin 150001, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Hollow carbon spheres encapsulating magnetite nanocrystals were obtained in high-pressure argon at 600 °C followed by hydrolysis of Fe(NH3)2Cl2 in the hollow interiors at room temperature and heat treatment in argon at 450 °C for 2 h. The structure, morphology, and properties of the products were characterized by x-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, and vibrating sample magnetometry. The hollow carbon spheres have diameters of 1–10 μm and wall thicknesses of hundreds of nanometers; the wt% of magnetite nanocrystals in them is ∼13.2%. Equiaxed magnetite nanocrystals range in size from 15 to 90 nm, while acicular magnetite nanocrystals have diameters of ∼20 nm and lengths of 120–450 nm. The saturation magnetization value of the hollow carbon spheres encapsulating magnetite nanocrystals is 4.29 emu/g.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Bokros, J.C.: Carbon biomedical devices. Carbon 15, 353 1977CrossRefGoogle Scholar
2Li, L.C., Song, H.H.Chen, X.H.: Hollow carbon microspheres prepared from polystyrene microbeads. Carbon 44, 596 2006CrossRefGoogle Scholar
3Shen, J.M., Li, J.Y., Huang, Z., Chen, Q., Zhang, S.Y.Qian, Y.T.: A simple route for the synthesis of coral-like accretion of hollow carbon microspheres with thin walls. Carbon 44, 2171 2006CrossRefGoogle Scholar
4Zhong, Z.Y., Yin, Y.D., Gates, B.Xia, Y.N.: Preparation of mesoscale hollow spheres of TiO2 and SnO2 by templating against crystalline arrays of polystyrene beads. Adv. Mater. 12, 206 20003.0.CO;2-5>CrossRefGoogle Scholar
5Wu, C.Z., Zhu, X., Ye, L.L., OuYang, C.Z., Hu, S.Q., Lei, L.Y.Xie, Y.: Necklace-like hollow carbon nanospheres from the pentagon-including reactants: Synthesis and electrochemical properties. Inorg. Chem. 45, 8543 2006CrossRefGoogle ScholarPubMed
6Baumeister, E.Klaeger, S.: Advanced new lightweight materials: Hollow-sphere composites (HSCs) for mechanical engineering applications. Adv. Eng. Mater. 5, 673 2003CrossRefGoogle Scholar
7Zhang, J., Perez, R.J.Lavernia, E.J.: Documentation of damping capacity of metallic, ceramic and metal-matrix composite materials. J. Mater. Sci. 28, 2395 1993CrossRefGoogle Scholar
8Baibarac, M., Baltog, I., Godon, C., Lefrant, S.Chauvet, O.: Covalent functionalization of single-walled carbon nanotubes by aniline electrochemical polymerization. Carbon 42, 3143 2004CrossRefGoogle Scholar
9Asmatulu, R., Zalich, M.A., Claus, R.O.Riffle, J.S.: Synthesis, characterization and targeting of biodegradable magnetic nanocomposite particles by external magnetic fields. J. Magn. Magn. Mater. 292, 108 2005CrossRefGoogle Scholar
10Pankhurst, Q.A., Connolly, J., Jones, S.K.Dobson, J.: Applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys. 36, R167 2003CrossRefGoogle Scholar
11Shao, L., Caruntu, D., Chen, J.F., O’Connor, C.J.Zhou, W.L.: Fabrication of magnetic hollow silica nanospheres for bioapplications. J. Appl. Phys. 97, 10Q908 2005CrossRefGoogle Scholar
12Wronski, Z.S.Carpenter, G.J.C.: Carbon nanoshells obtained from leaching carbonyl nickel metal powders. Carbon 44, 1779 2006CrossRefGoogle Scholar
13Cao, F.Y., Chen, C.L., Wang, Q.Chen, Q.W.: Synthesis of carbon–Fe3O4 coaxial nanofibres by pyrolysis of ferrocene in supercritical carbon dioxide. Carbon 45, 727 2007CrossRefGoogle Scholar
14Xu, B.S., Guo, J.J., Wang, X.M., Liu, X.G.Ichinose, H.: Synthesis of carbon nanocapsules containing Fe, Ni or Co by arc discharge in aqueous solution. Carbon 44, 2631 2006CrossRefGoogle Scholar
15Xuan, S.H., Hao, L.Y., Jiang, W.Q., Gong, X.L., Hu, Y.Chen, Z.Y.: A facile method to fabricate carbon-encapsulated Fe3O4 core/shell composites. Nanotechnology 18, 035602 2007CrossRefGoogle ScholarPubMed
16Lee, K.T., Jung, Y.S.Oh, S.M.: Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries. J. Am. Chem. Soc. 125, 5652 2003CrossRefGoogle ScholarPubMed
17Liu, B.Y., Jia, D.C., Meng, Q.C.Rao, J.C.: A novel method for preparation of hollow carbon spheres under a gas pressure atmosphere. Carbon 45, 668 2007CrossRefGoogle Scholar
18JCPDS No. 73-1262 International Center for Diffraction Data Newton Square, PA 1997Google Scholar
19Bremm, S.Meyer, G.: Reactivity of ammonium halides: Action of ammonium chloride and bromide on iron and iron(III) chloride and bromide. Z. Anorg. Allg. Chem. 629, 1875 2003CrossRefGoogle Scholar
20JCPDS No. 74-1862 International Center for Diffraction Data Newton Square, PA 1997Google Scholar
21Gregory, N.W.: Vaporization characteristics of ammonium tetrachloroferrate(III). The monoammine of iron(III) chloride in the vapor phase. Inorg. Chem. 20, 3667 1981CrossRefGoogle Scholar
22Barreiro, A., Hampel, S., Rümmeli, M.H., Kramberger, C., Grüneis, A., Biedermann, K., Leonhardt, A., Gemming, T., Büchner, B., Bachtold, A.Pichler, T.: Thermal decomposition of ferrocene as a method for production of single-walled carbon nanotubes without additional carbon sources. J. Phys. Chem. B 110, 20973 2006CrossRefGoogle ScholarPubMed
23Mayne, J.E.O.: The oxidation of ferrous hydroxide. J. Chem. Soc. 129, 1953Google Scholar
24Refait, P.Génin, J.M.R.: The oxidation of ferrous hydroxide in chloride-containing aqueous media and Pourbaix diagrams of green rust one. Corros. Sci. 34, 797 1993CrossRefGoogle Scholar
25Olowe, A.A., Rezel, D.Génin, J.M.R.: Mechanism of formation of magnetite from ferrous hydroxide in aqueous corrosion processes. Hyperfine Interact. 46, 429 1989CrossRefGoogle Scholar
26Misawa, T., Hashimoto, K.Shimodaira, S.: The mechanism of formation of iron oxide and oxyhydroxides in aqueous solutions at room temperature. Corros. Sci. 14, 131 1974CrossRefGoogle Scholar
27JCPDS No. 33-0664 International Center for Diffraction Data Newton Square, PA 1981Google Scholar
28Siles-Dotor, M.G., Bokhimi, , Morales, A., Benaissa, M.Cabral-Prieto, A.: Synthesis of nanostructured goethite and magnetite particles from the oxidation of Fe(OH)2 in a high-oxygen-flow-rate medium. Nanostruct. Mater. 8, 657 1997CrossRefGoogle Scholar
29Greene, M.L., Schwartz, R.W.Treleaven, J.W.: Short residence time graphitization of mesophase pitch-based carbon fibers. Carbon 40, 1217 2002CrossRefGoogle Scholar