Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-09T20:20:49.308Z Has data issue: false hasContentIssue false

Synthesis and elastic and mechanical properties of Cr2GeC

Published online by Cambridge University Press:  31 January 2011

Shahram Amini*
Affiliation:
Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104
Aiguo Zhou
Affiliation:
Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104
Surojit Gupta
Affiliation:
Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104
Andrew DeVillier
Affiliation:
Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104
Peter Finkel
Affiliation:
Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104
Michel W. Barsoum
Affiliation:
Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Herein we report on the synthesis and characterization of Cr2GeC, a member of the so-called Mn+1AXn (MAX) phase family of layered machinable carbides and nitrides. Polycrystalline samples were synthesized by hot pressing pure Cr, Ge, and C powders at 1350 °C at ∼45 MPa for 6 h. No peaks other than those associated with Cr2GeC and Cr2O3, in the form of eskolaite, were observed in the x-ray diffraction spectra. The samples were readily machinable and fully dense. The steady-state Vickers hardness was 2.5 ± 0.1 GPa. The Young’s moduli measured in compression and by ultrasound were 200 ± 10 and 245 ± 3 GPa, respectively; the shear modulus and Poisson’s ratio deduced from the ultrasound results were 80 GPa and 0.29, respectively. The ultimate compressive strength for a ∼20 μm grain size sample was 770 ± 30 MPa. Samples compressively loaded from 300 to ∼570 MPa exhibited nonlinear, fully reversible, reproducible, closed hysteretic loops that dissipated ∼20% of the mechanical energy, a characteristic of the MAX phases, in particular, and kinking nonlinear elastic solids, in general. The energy dissipated is presumably due to the formation and annihilation of incipient kink bands. The critical resolved shear stress of the basal plane dislocations—estimated from our microscale model—is ∼22 MPa. The incipient kink band and reversible dislocation densities, at the maximum stress of 568 MPa, are estimated to be 1.2 × 10−2 μm−3 and 1.0 × 1010 cm−2, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Barsoum, M.W.El-Raghy, T.: A progress report on Ti3SiC2, Ti3GeC2 and the H-phases, M2BX. J. Mater. Synth. Process. 5, 197 1997Google Scholar
2Sundberg, M., Malmqvist, G., Magnusson, A.El-Raghy, T.: Alumina forming high temperature silicides and carbides. Ceram. Int. 30, 1899 2004Google Scholar
3Barsoum, M.W.El-Raghy, T.: Synthesis and characterization of a remarkable ceramic. Ti3SiC2. J. Am. Ceram. Soc. 79, 1953 1996Google Scholar
4Barsoum, M.W., Brodkin, D.El-Raghy, T.: Layered machinable ceramics for high temperature applications. Scr. Met. Mater. 36, 535 1997Google Scholar
5Wang, X.H.Zhou, Y.C.: Oxidation behavior of Ti3AlC2 at 1000–1400 °C in air. Corros. Sci. 45, 891 2003CrossRefGoogle Scholar
6Barsoum, M.W., El-Raghy, T., Rawn, C.J., Porter, W.D., Wang, H., Payzant, A.Hubbard, C.: Thermal properties of Ti3SiC2. J. Phys. Chem. Solids 60, 429 1999Google Scholar
7Low, I.M., Lee, S.K., Lawn, B.Barsoum, M.W.: Contact damage accumulation in Ti3SiC2. J. Am. Ceram. Soc. 81, 225 1998Google Scholar
8El-Raghy, T., Barsoum, M.W., Zavaliangos, A.Kalidindi, S.R.: Processing and mechanical properties of Ti3SiC2: II, Effect of grain size and deformation temperature. J. Am. Ceram. Soc. 82, 2855 1999CrossRefGoogle Scholar
9Barsoum, M.W.El-Raghy, T.: Room temperature ductile carbides. Metall. Mater. Trans. A 30, 363 1999CrossRefGoogle Scholar
10Barsoum, M.W.: The MN + 1AXN Phases: A new class of solids; thermodynamically stable nanolaminates. Prog. Solid State Chem. 28, 201 2000Google Scholar
11Nowotny, H.: Struktuchemie Einiger Verbindungen der Ubergangsmetalle mit den elementen C, Si, Ge. Sn. Prog. Solid State Chem. 2, 27 1970Google Scholar
12Jeitschko, W., Nowotny, H.Benesovsky, F.: Kohlenstoffhaltige ternare Verbindungen (V–Ge–C, Nb–Ga–C, Ta–Ga–C, Ta–Ge–C, Cr–Ga–C und Cr–Ge–C). Monatsh. Chem. 94, 844 1963Google Scholar
13Manoun, B., Amini, S., Gupta, S., Saxena, S.K.Barsoum, M.W.: On the compression behavior of Cr2GeC and V2GeC up to quasi-hydrostatic pressures of 50 GPa. J. Phys. Condens. Matter 19, 456218 2007Google Scholar
14Amini, T.H.S. S., Ganguly, A., Gupta, S., Tambussi, W., Clipper, S., Barsoum, M.W., Hettinger, J.D.Lofland, S.E.: On the thermal expansion of select MAX phases by dilatometry and high temperature x-ray diffraction. Phys. Rev. B (submitted)Google Scholar
15Amini, S., Barsoum, M.W.El-Raghy, T.: Synthesis and mechanical properties of fully dense Ti2SC. J. Am. Ceram. Soc. 90, 3953 2007Google Scholar
16Barsoum, M.W., Zhen, T., Zhou, A., Basu, S.Kalidindi, S.R.: Microscale modeling of kinking nonlinear elastic solids. Phys. Rev. B 71, 134101 2005Google Scholar
17Murugaiah, A., Barsoum, M.W., Kalidindi, S.R.Zhen, T.: Spherical nanoindentations in Ti3SiC2. J. Mater. Res. 19, 1139 2004CrossRefGoogle Scholar
18Barsoum, M.W., Zhen, T., Kalidindi, S.R., Radovic, M.Murugahiah, A.: Fully reversible, dislocation-based compressive deformation of Ti3SiC2 to 1 GPa. Nat. Mater. 2, 107 2003Google Scholar
19Orowan, E.: A type of plastic deformation new in metals. Nature 149, 463 1942Google Scholar
20Basu, S., Barsoum, M.W.Kalidindi, S.R.: Sapphire: A kinking nonlinear elastic solid. J. Appl. Phys. 99, 063501 2006CrossRefGoogle Scholar
21Frank, F.C.Stroh, A.N.: On the theory of kinking. Proc. Phys. Soc. 65, 811 1952CrossRefGoogle Scholar
22Zhou, A.G., Basu, S.Barsoum, M.W.: Kinking nonlinear elasticity, damping and microyielding of hexagonal close-packed metals. Acta Mater. 56, 60 2008CrossRefGoogle Scholar
23Barsoum, M.W.Radovic, M.: Mechanical Properties of the MAX Phases in Encyclopedia of Materials Science and Technology, edited by R.W. Cahn, K.H.J. Buschow, M.C. Flemings, E.J. Kramer, S. Mahajan, and P. Veyssiere Elsevier Amsterdam 2004Google Scholar
24Hull, D.: Introduction to Dislocations, Pergamon Press Ltd. Oxford 1965Google Scholar
25Fraczkiewicz, M., Zhou, A.G.Barsoum, M.W.: Mechanical damping in porous Ti3SiC2. Acta Mater. 54, 5261 2006CrossRefGoogle Scholar
26Zhou, A.G., Barsoum, M.W., Basu, S., Kalidindi, S.R.El-Raghy, T.: Incipient and regular kink bands in dense and porous Ti2AlC. Acta Mater. 54, 1631 2006Google Scholar
27Ho-Duc, L.H., El-Raghy, T.Barsoum, M.W.: Synthesis and characterization of 0.3VfTiC–TiSiC2 and 0.3VfSiC Ti3SiC2 composites. J. Alloys Compd. 350, 303 2003Google Scholar
28Basu, S., Zhou, A.Barsoum, M.W.: Reversible dislocation motion under contact loading in LiNbO3 single crystal. J. Mater. Res. 23(5), 1334 2008Google Scholar
29Ganguly, A., Zhen, T.Barsoum, M.W.: Synthesis and mechanical properties of Ti3GeC2 and Ti3(SixGe1−x)C2 (x = 0.5, 0.75) solid solutions. J. Alloys Compd. 376, 287 2004Google Scholar
30El-Raghy, T., Zavaliangos, A., Barsoum, M.W.Kalidindi, S.R.: Damage mechanisms around hardness indentations in Ti3SiC2. J. Am. Ceram. Soc. 80, 513 1997Google Scholar
31Barsoum, M.W., Ali, M.El-Raghy, T.: Processing and characterization of Ti2AlC, Ti2AlCN and Ti2AlC0.5N0.5. Met. Mater. Trans. A 31, 1857 2000Google Scholar
32Salama, I., El-Raghy, T.Barsoum, M.W.: Synthesis and mechanical properties of Nb2AlC and (Ti, Nb)2AlC. J. Alloys Compd. 347, 271 2002Google Scholar
33Pampuch, P., Lis, J., Stobierski, L.Tymkiewicz, M.: Solid combustion synthesis of Ti3SiC2. J. Eur. Ceram. Soc. 5, 283 1989Google Scholar
34Barsoum, M.W., Murugaiah, A., Kalidindi, S.R.Gogotsi, Y.: Kink bands, nonlinear elasticity and nanoindentations in graphite. Carbon 42, 1435 2004Google Scholar
35Barsoum, M.W., Murugaiah, A., Kalidindi, S.R.Zhen, T.: Kinking nonlinear elastic solids, nanoindentations and geology. Phys. Rev. Lett. 92, 255508 2004Google Scholar
36Barsoum, M.W., Farber, L., El-Raghy, T.Levin, I.: Dislocations, kink bands and room temperature plasticity of Ti3SiC2. Met. Mater. Trans. A 30, 1727 1999Google Scholar
37Barsoum, M.W.: Nanoindentations of Nanolayered or Kinking Nonlinear Elastic Solids CRC Press Boca Raton, FL 2006Google Scholar
38Zhou, A.G.: Kinking non-linear elastic solids: Theory and experiments. Ph.D. Thesis, Drexel University, Philadelphia, 2008Google Scholar