Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T05:49:44.547Z Has data issue: false hasContentIssue false

Synthesis and characterization of SiC whiskers

Published online by Cambridge University Press:  29 June 2016

L. Wang
Affiliation:
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109
H. Wada
Affiliation:
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109
L. F. Allard
Affiliation:
High Temperature Materials Laboratory, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Get access

Abstract

SiC whiskers were synthesized by the carbothermal reduction of silica with an addition of halide (3NaF · AlF3 or NaF) as an auxiliary bath. The whiskers were β phase (3C) and grew in the [111] direction. Three distinctive morphologies were observed: (1) Type A: thin and straight; (2) Type B: thick and bamboo-like; and (3) Type C: thick, straight, and smooth. Type A whiskers contained a high density of basal plane (111) stacking faults along their entire length, whereas Type B whiskers showed periodic changes between stacking faults and well-defined single crystals. Type C whiskers showed stacking faults on the other {111} planes instead of on the basal (111) plane. Silica formed molten fluorosilicate with halide and SiC grew via a vapor-solid reaction mechanism through gaseous SiO. These reactions can be expressed as (SiO2) + C (s) = SiO (g) + CO (g) and SiO (g) + 3CO (g) = SiC (s) + 2CO2 (g). The effects of processing parameters on the morphology and size of the whiskers were examined and the relationship between the morphological development of the whiskers and the stacking fault energy was determined.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Becher, P.F., Hsueh, C.H., Angelini, P., and Tiegs, T.N., J. Am. Ceram. Soc. 71, 1050 (1988).CrossRefGoogle Scholar
2.Ueno, K. and Sodeoka, S., Yogyo-Kyokai-Shi 94, 981 (1986).CrossRefGoogle Scholar
3.Campbell, G.H., Ruhle, M., Dalgleish, B.J., and Evans, A.G., J. Am. Ceram. Soc. 73, 521 (1990).CrossRefGoogle Scholar
4.Faber, K.T. and Evans, A.G., Acta Metall. 31, 565 (1983).CrossRefGoogle Scholar
5.Ryan, C.E., Berman, I., Marshall, R.C., Considine, D.P., and Hawley, J.J., J. Cryst. Growth 1, 255 (1967).CrossRefGoogle Scholar
6.Setaka, N. and Inoue, Z., J. Am. Ceram. Soc. 52, 624 (1969).CrossRefGoogle Scholar
7.Postnikov, V.S., Ammer, S.A., Kutakov, K.S., Petrov, V.N., Tatarenkov, A.F., and Shchetinin, A. A., in Growth of Crystals, edited by Chernov, A. A., translated by Bradley, J. E. S. (Consultants Bureau, New York, 1984), Vol. 12, p. 51.Google Scholar
8.Motojima, S. and Hasegawa, M., J. Cryst. Growth 87, 311 (1988).CrossRefGoogle Scholar
9.Bootsma, G. A., Knippenberg, W. F., and Verspui, G., J. Cryst. Growth 11, 297 (1971).CrossRefGoogle Scholar
10.Sharma, N.K. and Williams, W.S., J. Am. Ceram. Soc. 67, 715 (1984).CrossRefGoogle Scholar
11.Milewski, J.V., Gac, F.D., Petrovic, J.J., and Skaggs, S.R., J. Mater. Sci. 20, 1160 (1985).CrossRefGoogle Scholar
12.Kajiwara, M., J. Mater. Sci. 21, 2254 (1986).CrossRefGoogle Scholar
13.Shalek, P.D., Phillips, D.S., Christiansen, D.E., Katz, J.D., Parkinson, W.J., and Petrovic, J.J., in Whisker-and-Fiber-Toughened Ceramics, edited by Bradley, R. A., Clark, D. E., Larsen, D. C., and Stiegler, J. O. (ASM INTERNATIONAL, 1988), p. 53.Google Scholar
14.Saito, H. and Yamai, I., Yogyo-Kyokai-Shi 88, 265, 331 (1980).Google Scholar
15.Maeda, E., Funahashi, T., and Uchimura, R., J. Ceram. Soc. Jpn. 97, 1505 (1989).CrossRefGoogle Scholar
16.Wada, H. and Wang, L., J. Mater. Sci. (in press).Google Scholar
17.Wang, L., Wada, H., and Tien, T. Y., in Ceramic Transactions (Ceramic Powder Science, III, Vol. 12), edited by Messing, G.L., Hirano, S.T., and Hausner, H. (Am. Ceram. Soc. Inc., 1990), p. 291.Google Scholar
18.Wang, M.J. and Wada, H., J. Mater. Sci. 25, 1690 (1990).CrossRefGoogle Scholar
19.Allard, L. F., Nolan, T. A., and Tiegs, T. N., to be published.Google Scholar
20.Ramsdell, L. S., Am. Miner. 32, 64 (1947).Google Scholar
21.Pandey, D. and Krishna, P., in Current Topics in Materials Science, edited by Kaldis, E. (North-Holland Publishing Corp., Amsterdam, 1982), Vol. 9, p. 415.Google Scholar
22.Allard, L. F., Pendleton, P., and Brinen, J. S., in Proc. 44th Annual Meeting of the Electron Microscopy Society of America, edited by Bailey, G.W. (San Francisco Press, Inc., 1986), p. 472.Google Scholar
23.Nutt, S. R., J. Am. Ceram. Soc. 71, 149 (1988).CrossRefGoogle Scholar
24.de Jong, R. and McCauley, R. A., J. Am. Ceram. Soc. 70, c338 (1987).CrossRefGoogle Scholar
25.Van Tome, L.I., J. Appl. Phys. 37, 1849 (1966).CrossRefGoogle Scholar
26.Iwanaga, H., Yoshiie, T., Katsuki, H., Egashira, M., and Takeuchi, S., J. Mater. Sci. Lett. 5, 946 (1986).CrossRefGoogle Scholar
27.Hayashi, T., Kawabe, S., and Saito, H., J. Ceram. Soc. Jpn. 95, 19 (1986).Google Scholar
28.Lee, J. G. and Culter, I. B., J. Am. Ceram. Soc. 54, 195 (1986).Google Scholar
29.Sears, G.W., Acta Metall. 1, 457 (1953).CrossRefGoogle Scholar
30.Wagner, R. S. and Ellis, W. C., Appl. Phys. Lett. 4, 89 (1964).CrossRefGoogle Scholar
31.Lewis, B., J. Cryst. Growth 21, 29 (1974).CrossRefGoogle Scholar
32.Mitchell, R.S., J. Cryst. Growth 3, 747 (1968).Google Scholar
33.Pandey, D. and Krishna, P., in Progress in Crystal Growth and Characterization {Crystal Growth and Characterization of Polytype Structures, Vol. 7), edited by Krishna, P. (Pergamon Press, New York, 1983), p. 213.Google Scholar
34.Jagodzinski, H., Acta Cryst. 7, 300 (1954).CrossRefGoogle Scholar
35.Smith, J., Yeomans, J., and Heine, V., in Modulated Structure Materials, edited by Tsakalakos, T. (Martinus Nijhoff Publishers, The Hague, 1984), p. 95.CrossRefGoogle Scholar
36.Cheng, C., Needs, R. J., and Heine, V., J. Phys. C 21, 1049 (1988).Google Scholar
37.Denteneer, P. J. H., in Atomic Scale Calculations in Materials Science, edited by Tersoff, J., Vanderbilt, D., and Vitek, V. (Mater. Res. Soc. Symp. Proc. 141, Pittsburgh, PA, 1989), p. 343.Google Scholar
38.Givargizov, E.I., in Growth of Crystals, edited by Chernov, A. A., translated by Bradley, J. E. S. (Consultants Bureau, New York, 1979), Vol. 11, p. 136.Google Scholar
39.Givargizov, E. I., in Current Topics in Materials Science, edited by Kaldis, E. (North-Holland Publishing Corp., Amsterdam, 1978), Vol. 1, p. 79.Google Scholar
40.Egashira, M., Katsuki, H., Mori, M., Kaneko, H., Kurahashi, W., and Kawasumi, S., Yogyo-Kyokai-Shi 93, 535 (1985).CrossRefGoogle Scholar
41.Tajima, Y. and Kingery, W. D., J. Am. Ceram. Soc. 65, c27 (1982).CrossRefGoogle Scholar
42.Zangvil, A. and Ruh, R., in Ceramic Transactions (Silicon Carbide '87, Vol. 2), edited by Cawley, J. D. and Semler, C. E. (Am. Ceram. Soc. Inc., 1989), p. 63.Google Scholar
43.Shinozaki, S. S., Hangas, J., Maeda, K., and Soeta, A., in Ceramic Transactions (Silicon Carbide '87, Vol. 2), edited by Cawley, J. D. and Semler, C.E. (Am. Ceram. Soc. Inc., 1989), p. 113.Google Scholar
44.Pai, C. H., Koumoto, K., and Yanagida, H., J. Ceram. Soc. Jpn. 97, 1170 (1989).CrossRefGoogle Scholar
45.Slack, G.A. and Scace, R.I., J. Chem. Phys. 42, 805 (1965).CrossRefGoogle Scholar
46.Addamiano, A. and Staikoff, L. S., J. Phys. Chem. Solids 26, 669 (1965).CrossRefGoogle Scholar