Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-09T20:06:12.824Z Has data issue: false hasContentIssue false

Synthesis and characterization of new inorganic polymeric composites based on kaolin or white clay and on ground-granulated blast furnace slag

Published online by Cambridge University Press:  31 January 2011

I. Lecomte*
Affiliation:
LCIS, Department of Chemistry, Chemistry Institute B6, University of Liège, Sart-Tilman B-4000 Liège, Belgium
M. Liégeois
Affiliation:
LCIS, Department of Chemistry, Chemistry Institute B6, University of Liège, Sart-Tilman B-4000 Liège, Belgium
A. Rulmont
Affiliation:
LCIS, Department of Chemistry, Chemistry Institute B6, University of Liège, Sart-Tilman B-4000 Liège, Belgium
R. Cloots
Affiliation:
LCIS, Department of Chemistry, Chemistry Institute B6, University of Liège, Sart-Tilman B-4000 Liège, Belgium
F. Maseri
Affiliation:
Construction Steel Design Center (ARCELOR INNOVATION), Boulevard de Colonster B57, Sart-Tilman B-4000 Liège, Belgium
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Alkali activation of dehydroxylated kaolin or clay yielded high-strength polymeric materials, so-called geopolymers. They were synthesized by mixing the aluminosilicate with solutions of sodium metasilicate and KOH followed by adding 45 wt.% of ground-granulated blast furnace slag. The influence of the aluminosilicate source, its activation temperature, and the order of mixing raw materials were studied on the workability of the blending paste, the microstructure, and the Vickers hardness of the geopolymer samples. The polymeric material is completely amorphous according to x-ray diffraction. Solid-state 27Al and 29Si magic-angle-spinning nuclear magnetic resonance showed that the geopolymer consists of AlO4 and SiO4 tetrahedra linked together through a polymeric network constituted by branched entities SiQ4(4Al) and SiQ4(3Al), but also by less-polymerized silicates SiQ1 and SiQ2. Scanning electron microscopy showed a homogeneous polymeric gel matrix containing unreacted slag (and quartz) grains; thermogravimetric analysis and differential scanning calorimetry exhibited a high content of water and an elevated melting point (1260°C). Vickers hardness values are in the range of 200 MPa.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Davidovits, J., J. Therm. Anal. 37, 1633 (1991).CrossRefGoogle Scholar
2.Jaarsveld, J.G.S. Van, Deventer, J.S.J. Van, and Lorenzen, L., Miner. Eng. 10, 659 (1997).CrossRefGoogle Scholar
3.Jaarsveld, J.G.S. Van, Deventer, J.S.J. Van, and Lorenzen, L., Metall. Mater. Trans. B 29B, 283 (1998).CrossRefGoogle Scholar
4.Bougeard, D., Smirnov, K.S., and Geidel, E., J. Phys. Chem. B 104, 9210 (2000).CrossRefGoogle Scholar
5.Dimanche, F., Rassel, A., Tarte, P., and Thorez, J., Miner. Sci. Eng. 6, 184 (1974).Google Scholar
6.Deer, W.A., Howie, R.A., and Zussman, J., Rock-Forming Minerals (Longmans, London, 1962), p. 195.Google Scholar
7.Mackenzie, R.C., Differential Thermal Analysis (Academic Press, London, 1970), p. 524.Google Scholar
8.Rojas, M.F. and Cabrera, J., Cem. Concr. Res. 32, 133 (2002).CrossRefGoogle Scholar
9.Alonso, S. and Palomo, A., Cem. Concr. Res. 31, 25 (2001).CrossRefGoogle Scholar
10.Rocha, J. and Klinowski, J., Angew. Chem. 29, 553 (1990).CrossRefGoogle Scholar
11.Palomo, A., Blanco-Varela, M.T., Granizo, M.L., Puertas, F., Vazquez, T., and Grutzeck, M.W., Cem. Concr. Res. 29, 997 (1999).CrossRefGoogle Scholar
12.Davidovits, J., in Géopolymère '99 Proceedings, edited by Davidovits, J., Davidovits, R., and James, C. (Institut Géopolymère, Saint-Quentin, France, 1999), p. 9.Google Scholar
13.Barbosa, V.F.F., Mackensie, K.J.D., and Thaumaturgo, C., Int. J. Inorg. Mater. 2, 309 (2000).CrossRefGoogle Scholar
14.Swanepoel, J.C. and Strydom, C.A., Appl. Geochem. 17, 1143 (2002).CrossRefGoogle Scholar
15.Rahier, H., Mele, B. Van, Biesemans, M., Wastiels, J., and Wu, X., J. Mater. Sci. 31, 71 (1996).CrossRefGoogle Scholar
16.Barbosa, V.F.F. and Mackensie, K.J.D., Mater. Lett. 57, 1477 (2003).CrossRefGoogle Scholar
17.Barbosa, V.F.F. and Mackensie, K.J.D., Mater. Res. Bull. 38, 319 (2003).CrossRefGoogle Scholar
18.Rocha, J., Adams, J.M., and Klinowski, J., J. Solid State Chem. 89, 260 (1990).CrossRefGoogle Scholar
19.Roy, B.N., J. Am. Ceram. Soc. 73, 846 (1990).CrossRefGoogle Scholar
20.Clayden, N.J., Esposito, S., Aronne, A., and Pernice, P., J. NonCryst. Solids 258, 11 (1999).CrossRefGoogle Scholar
21.Tarte, P., Spectrochim. Acta 23A, 2127 (1967).CrossRefGoogle Scholar
22.Lin, S-L. and Hwang, C-S., J. Non-Cryst. Solids 202, 61 (1996).CrossRefGoogle Scholar
23.Yu, P., Kirkpatrick, R.J., Poe, B., McMillan, P.F., and Cong, X., J. Am. Ceram. Soc. 82, 742 (1999).CrossRefGoogle Scholar
24.Wilson, M.J., Clay Mineralogy: Spectroscopic and Chemical Determinative Methods, 1st ed. (Chapman & Hall, London, U.K., 1994), pp. 5354.CrossRefGoogle Scholar
25.Gilson, J.P., Edwards, G.C., Peters, A.W., Rajagopalan, K., Wormsbecher, R.F., Roberie, T.G., and Shatlock, M.P., J. Chem. Soc. Chem. Commun. 2, 91 (1987).CrossRefGoogle Scholar
26.Lippmaa, E., Samoson, A., and Mägi, M., J. Am. Chem. Soc. 108, 1730 (1986).CrossRefGoogle Scholar
27.Sanz, J., Madani, A., Serratosa, J.M., Moya, J.S., and Aza, S., J. Am. Ceram. Soc. 71, C418 (1988).CrossRefGoogle Scholar
28.Lippmaa, E., Mägi, M., Samoson, A., Engelhardt, G., and Grimmer, A.R., J. Am. Chem. Soc. 102, 4889 (1980).CrossRefGoogle Scholar
29.Thomas, J.M. and Klinowski, J., Adv. Catal. 33, 199 (1985).CrossRefGoogle Scholar
30.Häkkinen, T., Properties of Alkali-Activated Slag Concrete (Valtion Teknillinen Tutkimuskeskus, Research notes, 540, Espoo, Finland, 1986).Google Scholar
31.Talling, B. and Brandstetr, J., in 3rd International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, edited by Malhotra, V.M. (American Concrete Institute, Detroit, MI, 1989), p. 1519.Google Scholar
32.Bakharev, T., Sanjayan, J.G., and Cheng, Y-B., Cem. Concr. Res. 29, 113 (1999).CrossRefGoogle Scholar
33.Collins, F.G. and Sanjayan, J.G., Cem. Concr. Res. 29, 455 (1999).CrossRefGoogle Scholar