Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T03:58:52.586Z Has data issue: false hasContentIssue false

Synthesis and characterization of LiTaO3 thin films deposited on Si by the sol-gel method

Published online by Cambridge University Press:  03 March 2011

P.J. Retuert
Affiliation:
FCFM, Universidad de Chile, Cas. 2777, Santiago, Chile
P.G. Kneuer
Affiliation:
FCFM, Universidad de Chile, Cas. 2777, Santiago, Chile
O. Wittke
Affiliation:
FCFM, Universidad de Chile, Cas. 2777, Santiago, Chile
R.E. Avila
Affiliation:
Comisión Chilena de Energía Nuclear, Cas. 188-D, Santiago, Chile
G.J. Piderit
Affiliation:
Comisión Chilena de Energía Nuclear, Cas. 188-D, Santiago, Chile
Get access

Abstract

Polycrystalline LiTaO3 (LT) thin films have been prepared on (001)Si substrates by the sol-gel method. A Li-Ta double alkoxide prepared from lithium methoxide and tantalum ethoxide precursors was spin coated on Si and heated up to 950 °C. The dependence of the film quality upon the process variables, alkoxide concentration before hydrolysis, the water to double alkoxide ratio, and the final double alkoxide concentration, has been established. Preferential alignment of the (104) LT planes was observed parallel to the (100)Si surface. Most films present resistivities of the order of 30 kΩ · cm and breakdown field in excess of 200 kV/cm.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Mehrotra, R. C., J. Ind. Chem. Soc. 55, 1 (1978), and references therein.Google Scholar
2Mehrotra, R. C., Gaur, D.P., and Bohra, R., Metal β-Diketonates and Allied Derivatives (Academic Press, 1978), and references therein.Google Scholar
3Mehrotra, R. C., Batwara, J. M., and Kapoor, P. N., Coord. Chem. Rev. 31, 67 (1980).CrossRefGoogle Scholar
4Mehrotra, R. C., Pure Appl. Chem. 60, 1349 (1988).CrossRefGoogle Scholar
5Phulé, P. P., Deis, T. A., and Dindiger, D. G., J. Mater. Res. 6, 1567 (1991).CrossRefGoogle Scholar
6Deis, T. and Phulé, P.P., J. Mater. Sci. Lett. 11, 1353 (1992).CrossRefGoogle Scholar
7Phulé, P.P., J. Mater. Res. 8, 334 (1993).CrossRefGoogle Scholar
8Deis, T. and Phulé, P.P., Mater. Res. Bull. 28, 167 (1993).CrossRefGoogle Scholar
9Phulé, P.P. and Risbud, S.H., Adv. Ceram. Mater. 3, 183 (1988).CrossRefGoogle Scholar
10Colomban, Ph., Ceram. Int. 15, 23 (1989).CrossRefGoogle Scholar
11Hirano, S. and Kato, K., J. Non-Cryst. Solids 100, 538 (1988).CrossRefGoogle Scholar
12Hirano, S. and Kato, K., Adv. Ceram. Mater. 3, 503 (1988).CrossRefGoogle Scholar
13Joshi, V. and Mecartney, M.L., J. Mater. Res. 8, 2668 (1993).CrossRefGoogle Scholar
14Duboudin, F., Dunogues, J., Senegas, J., Castaings, N. P., and Ravez, J., Mater. Sci. Eng. B5, 431 (1990).CrossRefGoogle Scholar
15Brinker, C.J. and Scherer, G.W., J. Non-Cryst. Solids 70, 301 (1985).CrossRefGoogle Scholar
16Brinker, C. J., Drotning, W. D., and Sherer, G. W., in Better Ceramics Through Chemistry, edited by Brinker, C. J., Clark, D. E., and Ulrich, D.R. (North-Holland, New York, 1984).Google Scholar
17Brinker, C.J., Keefer, K.D., Schaefer, D.W., and Ashley, C.S., J. Non-Cryst. Solids 48, 47 (1982).CrossRefGoogle Scholar
18Sakka, S. and Kamiya, K., J. Non-Cryst. Solids 48, 31 (1982).CrossRefGoogle Scholar
19Sakka, S., Am. Ceram. Soc. Bull. 64, 1463 (1985).Google Scholar
20Kanno, Y. and Nishino, J., J. Mater. Sci. Lett. 12, 110 (1993).Google Scholar
21Kamiyama, T., Mikami, M., and Suzuki, K., J. Non-Cryst. Solids 150, 157 (1992).CrossRefGoogle Scholar
22Lakeman, C.D.E. and Payne, D.A., J. Am. Ceram. Soc. 75 (11), 3091 (1992).CrossRefGoogle Scholar