Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-24T01:45:14.598Z Has data issue: false hasContentIssue false

Synthesis and characterization of copper–silver core–shell nanowires obtained by electrodeposition followed by a galvanic replacement reaction in aqueous solution; comparison with a galvanic replacement reaction in ionic media

Published online by Cambridge University Press:  10 November 2015

Samuel Levi
Affiliation:
LISM, EA 4695, Department of Chemistry, UFR Sciences Exactes et Naturelles, Reims-Champagne-Ardenne University, F-51687 Reims, France
Céline Rousse
Affiliation:
LISM, EA 4695, Department of Chemistry, UFR Sciences Exactes et Naturelles, Reims-Champagne-Ardenne University, F-51687 Reims, France
Valérie Mancier
Affiliation:
LISM, EA 4695, Department of Chemistry, UFR Sciences Exactes et Naturelles, Reims-Champagne-Ardenne University, F-51687 Reims, France
Jean Michel
Affiliation:
LRN, EA 4682, Department of Physics, UFR Sciences Exactes et Naturelles, Reims-Champagne-Ardenne University, F-51685 Reims, France
Patrick Fricoteaux*
Affiliation:
LISM, EA 4695, Department of Chemistry, UFR Sciences Exactes et Naturelles, Reims-Champagne-Ardenne University, F-51687 Reims, France
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Copper–silver core–shell nanowires were synthesized using a combination of two methods: electrodeposition in a polycarbonate membrane as a template for the synthesis of a copper core and a galvanic replacement reaction for the elaboration of a silver shell. A comparative study between aqueous and ionic liquid media was performed for the silver shell elaboration. The kinetics of the reaction in both media was monitored by using energy dispersive x-ray spectroscopy. The shape and size of the nanowires were observed by both scanning electron microscopy and transmission electron microscopy. The core–shell structure was determined by electron energy loss spectroscopy analyses for the Cu90Ag10 composition. A homogenous silver shell was formed in aqueous media. Whereas in ionic solvent, well defined silver crystals were obtained at the surface of the nanowires but without a total formation of a silver shell structure.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Iwasaki, K., Itoh, T., and Yamamura, T.: Production conditions of acicular magnetic metal nanoparticles for magnetic recording. Mater. Trans. 46, 1368 (2005).CrossRefGoogle Scholar
Qiu, J.M., Bai, J., and Wang, J.P.: In situ magnetic field alignment of directly ordered L10 FePt nanoparticles. Appl. Phys. Lett. 89, 222506 (2006).CrossRefGoogle Scholar
Cattarin, S. and Musiani, M.: Electrosynthesis of nanocomposite materials for electrocatalysis. Electrochim. Acta 52, 2796 (2007).CrossRefGoogle Scholar
Park, K.W., Han, D.S., and Sung, Y.E.: PtRh alloy nanoparticle electrocatalysts for oxygen reduction for use in direct methanol fuel cells. J. Power Sources 163, 82 (2006).CrossRefGoogle Scholar
Alexiou, C., Jurgons, R., Seliger, C., and Iro, H.: Medical applications of magnetic nanoparticles. J. Nanosci. Nanotechnol. 6, 2762 (2006).CrossRefGoogle ScholarPubMed
Balogh, L.P., Nigavekar, S.S., Cook, A.C., Mincan, L., and Khan, M.K.: Development of dendrimer-gold radioactive nanocomposites to treat cancer microvasculature. PharmaChem 2, 94 (2003).Google Scholar
Debouttiere, P.J., Roux, S., Vocanson, F., Billotey, C., Beuf, O., Favre-Reguillon, A., Lin, Y., Pellet-Rostaing, S., Lamartine, R., and Perriat, P. and, Tillement, O.: Design of gold nanoparticles for magnetic resonance imaging. Adv. Funct. Mater. 16, 2330 (2006).CrossRefGoogle Scholar
Darezereshki, E., Alizadeh, M., Bakhtiari, F., Schaffie, M. and Ranjbar, M.: A novel thermal decomposition method for the synthesis of ZnO nanoparticles from low concentrationZnSO4 solutions. Appl. Clay Sci. 54, 107 (2011).CrossRefGoogle Scholar
Akimov, D.V., Andrienko, O.S., Egorov, N.B., Zherin, I.I., and Usov, V.F.: Synthesis and properties of lead nanoparticles. Russ. Chem. Bull. 61, 225 (2012).CrossRefGoogle Scholar
Tolochko, O.V., Choi, C.J., Nasibulin, A.G., Vasilieva, K.S., Lee, D.W., and Kim, D.: Thermal behavior of iron nanoparticles synthesized by chemical vapor condensation. Mater. Phys. Mech. 13, 57 (2012).Google Scholar
Aksoy, B., Kalay, Y.E., and Unalan, H.E.: Germanium nanowire synthesis using solid precursors. J. Cryst. Growth 392, 20 (2014).CrossRefGoogle Scholar
Suzuki, K., Tanaka, N., Ando, A., and Takagi, H.: Size-selected copper oxide nanoparticles synthesized by laser ablation. J. Nanopart. Res. 14, 863 (2012).CrossRefGoogle Scholar
Messaoud Aberkane, S., Boudjemai, S., and Kerdja, T.: Laser ablation in liquids: Colloidal nanoparticles synthesis. Adv. Mater. Res. 227, 62 (2011).CrossRefGoogle Scholar
Förster, H., Wolfrum, C., and Peukert, W.: Experimental study of metal nanoparticle synthesis by an arc evaporation/condensation process. J. Nanopart. Res. 14, 926 (2012).CrossRefGoogle Scholar
Zhan, Y., Zheng, C., Liu, Y.K., and Wang, G.: Synthesis of NiO nanowires by an oxidation route. Mater. Lett. 57, 3265 (2003).CrossRefGoogle Scholar
Malina, D., Sobczak-Kupiec, A., Wzorek, Z., and Kowalski, Z.: Silver nanoparticles synthesis with different concentrations of polyvinylpyrrolidone. Dig. J. Nanomater Bios. 7, 1527 (2012).Google Scholar
Anastasescu, C., Anastasescu, M., Teodorescu, V.S., Gartner, M., and Zaharescu, M.: SiO2 nanospheres and tubes obtained by sol-gel method. J. Non-Cryst. Solids 356, 2634 (2010).CrossRefGoogle Scholar
Liu, J., Zou, S., Li, S., Liao, X., Hong, Y., Xiao, L., and Fan, J.: A general synthesis of mesoporous metal oxides with well-dispersed metal nanoparticles via a versatile sol-gel process. J. Mater. Chem. A 1, 4038 (2013).CrossRefGoogle Scholar
Mitra, B., Vishnudas, D., Sant, S.B., and Annamalai, A.: Green-synthesis and characterization of silver nanoparticles by aqueous leaf extracts of cardiospermum helicacabum leaves. Drug Invent. Today 4, 340 (2012).Google Scholar
Yaaghoobi, M., Emtiazi, G., and Roghanian, R.: A novel approach for aerobic construction of iron oxide nanoparticles by acinetobacter radioresistens and their effects on red blood cells. Curr. Nanosci. 8, 286 (2012).CrossRefGoogle Scholar
Wang, L.M., He, S., Cui, Z.M., and Guo, L.: One-step synthesis of monodisperse palladium nanosphere and their catalytic activity for Suzuki coupling reactions. Inorg. Chem. Commun. 14, 1574 (2011).CrossRefGoogle Scholar
Kim, D., Lee, H.B.R., Yoon, J., and Kim, H.: Ru nanodot synthesis using CO2 supercritical fluid deposition. J. Phys. Chem. Solids 74, 664 (2013).CrossRefGoogle Scholar
Li, Z., Gu, A., Guan, M., Zhou, Q., and Shang, T.: Large-scale synthesis of silver nanowires and platinum nanotubes. Colloid Polym. Sci. 288, 1185 (2010).CrossRefGoogle Scholar
Abbas, M., Takahashi, M., and Kim, C.: Facile sonochemical synthesis of high-moment magnetite (Fe3O4) nanocube. J. Nanopart. Res. 15, 1354 (2013).CrossRefGoogle Scholar
Zhu, H., Li, G., Lu, X., Zhao, Y., Huang, T., Liu, H., and Li, J.: Controlled synthesis of hierarchical tetrapod Pd nanocrystals and their enhanced electrocatalytic properties. RSC Adv. 4, 6535 (2014).CrossRefGoogle Scholar
Cui, Y., Wei, Q., Park, H., and Lieber, C.M.: Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289 (2001).CrossRefGoogle ScholarPubMed
Chung, C.K., Yang, C.Y., Liao, M.W., and Li, S.L.: Fabrication of copper nanowires using overpotential electrodeposition and anodic aluminium oxide template. Micro. Nano. Lett. 8, 579 (2013).CrossRefGoogle Scholar
Ali, G. and Maqbool, M.: Fabrication of cobalt–nickel binary nanowires in a highly ordered alumina template via AC electrodeposition. Nanoscale Res. Lett. 8, 1 (2013).CrossRefGoogle Scholar
Kumar, S., Vohra, A., and Chakarvarti, S.K.: Synthesis and morphological studies of ZnCuTe ternary nanowires via template-assisted electrodeposition technique. J. Mater. Sci.: Mater. Electron. 23, 1485 (2012).Google Scholar
Perret, P., Brousse, T., Bélanger, D., and Guay, D.: Synthesis of ordered lead dioxide nanowires using electrodeposition template method. ECS Trans. 16, 207 (2009).CrossRefGoogle Scholar
Daltin, A.L., Addad, A., and Chopart, J.P.: Potentiostatic deposition and characterization of cuprous oxide films and nanowires. J. Cryst. Growth 282, 414 (2005).CrossRefGoogle Scholar
Al-Salman, R., Mallet, J., Molinari, M., Fricoteaux, P., Martineau, F., Troyon, M., Zein El Abedin, S., and Endres, F.: Template assisted electrodeposition of germanium and silicon nanowires in an ionic liquid. Phys. Chem. Chem. Phys. 10, 6233 (2008).CrossRefGoogle Scholar
Cui, Y. and Lieber, C.M.: Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291, 851 (2001).CrossRefGoogle ScholarPubMed
Mohl, M., Dobo, D., Kukovecz, A., Konya, Z., Kordas, K., Wei, J., Vajtai, R., and Ajayan, P.M.: Formation of CuPd and CuPt bimetallic nanotubes by galvanic replacement reaction. J. Phys. Chem. C 115, 9403 (2011).CrossRefGoogle Scholar
Shen, Y.L., Chen, S.Y., Song, J.M., and Chen, I.G.: Kinetic study of Pt nanocrystal deposition on Ag nanowires with clean surfaces via galvanic replacement. Nanoscale Res. Lett. 7, 245 (2012).CrossRefGoogle ScholarPubMed
Chen, L., Kuai, L., Yu, X., Li, W., and Geng, B.: Advanced catalytic performance of Au–Pt double-walled nanotubes and their fabrication through galvanic replacement reaction. Chem. - Eur. J. 19, 11753 (2013).CrossRefGoogle ScholarPubMed
Jiang, Z., Zhang, Q., Zong, C., Liu, B.J., Ren, B., Xie, Z., and Zheng, L.: Cu–Au alloy nanotubes with five-fold twinned structure and their application in surface-enhanced Raman scattering. J. Mater. Chem. 22, 18192 (2012).CrossRefGoogle Scholar
Sun, Y. and Wang, Y.: Monitoring of galvanic replacement reaction between silver nanowires and HAuCl4 by in situ transmission x-ray microscopy. Nano Lett. 11, 4386 (2011).CrossRefGoogle ScholarPubMed
Zhao, J., Zhang, D., and Zhang, X.: Preparation and characterization of copper/silver bimetallic nanowires with core-shell structure. Surf. Interface Anal. 47, 529 (2015).CrossRefGoogle Scholar
Mancier, V., Rousse-Bertrand, C., Dille, J., Michel, J., and Fricoteaux, P.: Sono and electrochemical synthesis and characterzation of copper core-silver shell nanoparticles. Ultrason. Sonochem. 17, 690 (2010).CrossRefGoogle Scholar
Jing, H., Yu, Z., and Li, L.: Antibacterial properties and corrosion resistance of Cu and Ag/Cu porous materials. J. Biomed. Mater. Res. A 87, 33 (2008).CrossRefGoogle Scholar
Khare, P., Sharma, A., and Verma, N.: Synthesis of phenolic precursor-based porous carbon beads in situ with dispersed copper–silver bimetal nanoparticles for antibacterial applications. J. Colloid Interface Sci. 418 216 (2014).CrossRefGoogle ScholarPubMed
Ruparelia, J.P., Chatterjee, A.K., Duttagupta, S.P., and Mukherji, S.: Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 4 707 (2008).CrossRefGoogle ScholarPubMed
Mat Zain, N., Stapley, A.G.F., and Shama, G.: Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications. Carbohydr. Polym. 112 195 (2014).CrossRefGoogle Scholar
Valodkar, M., Modi, S., Pal, A., and Thakore, S.: Synthesis and anti-bacterial activity of Cu, Ag, Cu-Ag alloy nanoparticles: A green approach. Mater. Res. Bull. 46, 384 (2011).CrossRefGoogle Scholar
Tamayo, L.A., Zapata, P.A., Vejar, N.D., Azócar, M.I., Gulppi, M.A., Zhou, X., Thompson, G.E., Rabagliati, F.M., and Páez, M.A.: Release of silver and copper nanoparticles from polyethylene nanocomposites and their penetration into Listeria monocytogenes. Mater. Sci. Eng., C 40 24 (2014).CrossRefGoogle ScholarPubMed
Sulka, G.D. and Jaskula, M.: Effect of sulphuric acid and copper sulphate concentrations on the morphology of silver deposit in the cementation process. Electrochim. Acta 51, 6111 (2006).CrossRefGoogle Scholar
Wilkes, J.S. and Zaworotko, M.J.: Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J. Chem. Soc., Chem. Commun. 13, 965 (1992).CrossRefGoogle Scholar
Endres, F., Abbott, A.P., and MacFarlane, D.R.: Electrodepostion from Ionic Liquids (Wiley-VCH, Weinheim, 2008).CrossRefGoogle Scholar
Helgadottir, I.S., Arquillière, P.P., Bréa, P., Santini, C.C., Haumesser, P.H., Richter, K., Mudring, A.V., and Aouine, M.: Synthesis of bimetallic nanoparticles in ionic liquids: Chemical routes vs physical vapor deposition. Microelectron. Eng. 107, 229 (2013).CrossRefGoogle Scholar
Xu, Y., Xu, H., Li, H., Yan, J., Xia, J., Yin, S., and Zhang, Q.: Ionic liquid oxidation synthesis of Ag@AgCl core–shell structure for photocatalytic application under visible-light irradiation. Colloids Surf., A 416, 80 (2013).CrossRefGoogle Scholar
Fricoteaux, P. and Rousse, C.: Nanowires of Cu-Zn and Cu-Zn-Al shape memory alloys elaborated via electrodeposition in ionic liquid. J. Electroanal. Chem. 733, 53 (2014).CrossRefGoogle Scholar
Rousse, C. and Fricoteaux, P.: Electrodeposition of thin films and nanowires Ni–Fe alloys, study of their magnetic susceptibility. J. Mater. Sci. 46, 6046 (2011).CrossRefGoogle Scholar
Zein El Abedin, S., Saad, A.Y., Farag, H.K., Borisenko, N., Liu, Q.X., and Endres, F.: Electrodeposition of selenium, indium and copper in an air- and water-stable ionic liquid at variable temperatures. Electrochim. Acta 52, 2746 (2007).CrossRefGoogle Scholar
Rousse, C., Beaufils, S., and Fricoteaux, P.: Electrodeposition of Cu–Zn thin films from room temperature ionic liquid. Electrochim. Acta 107, 624 (2013).CrossRefGoogle Scholar
Abbott, A.P., Nandhra, S., Postlethwaite, S., Smith, E.L., and Ryder, K.S.: Electroless deposition of metallic silver from a choline chloride-based ionic liquid: A study using acoustic impedance spectroscopy, SEM and atomic force microscopy. Phys. Chem. Chem. Phys. 9, 3735 (2007).CrossRefGoogle ScholarPubMed
Xu, X., Luo, X., Zhuang, H., Li, W., and Zhang, B.: Electroless silver coating on fine copper powder and its effects on oxidation resistance. Mater. Lett. 57, 3987 (2003).CrossRefGoogle Scholar
Chen, Z., Mochizuki, D., Maitani, M.M., and Wada, Y.: Facile synthesis of bimetallic Cu-Ag nanoparticles under microwave irradiation and their oxidation resistance. Nanotechnology 24, 265602 (2013).CrossRefGoogle ScholarPubMed