Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T18:23:43.419Z Has data issue: false hasContentIssue false

Synthesis and characterization of B–C–N compounds on molybdenum

Published online by Cambridge University Press:  31 January 2011

Jie Yu
Affiliation:
State Key Laboratory for Surface Physics, Institute of Physics & Center for Condensed Matter Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100080, China
E. G. Wang*
Affiliation:
State Key Laboratory for Surface Physics, Institute of Physics & Center for Condensed Matter Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100080, China
Guichang Xu
Affiliation:
State Key Laboratory for Surface Physics, Institute of Physics & Center for Condensed Matter Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100080, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

B–C–N compounds were prepared on molybdenum by means of bias-assisted hot filament chemical vapor deposition (HFCVD). Effect of the substrate temperature (Ts) on the growth of B–C–N films has been investigated systematically by x-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) based on the detailed analysis and calculation of the XPS. The substrate temperature plays a key role in the formation of the bonding states, the composition, and the surface morphology. Boron carbonitride is the main phase at all depositing temperatures, and the obtained compounds are as follows: B0.83C0.17 + B0.39C0.35N0.26 at 873 K, B0.30C0.34N0.36 at 973 K, B0.64C0.36 + B0.51C0.23N0.26 at 1073 K, B0.51C0.31N0.18 at 1173 K, and B0.37C0.54N0.09 at 1273 K.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Cohen, M.L., Phys. Rev. B 32, 7988 (1985).CrossRefGoogle Scholar
2.Riedal, R., Adv. Mater. 7/8, 549 (1994).CrossRefGoogle Scholar
3.Liu, A.Y., Wentzcovitch, R. M., and Cohen, M.L., Phys. Rev. B 39, 1760 (1989).CrossRefGoogle Scholar
4.Lundström, T. and Andreev, Y.G., Mater. Sci. Eng. A209, 16 (1996).CrossRefGoogle Scholar
5.Besmann, T.M., J. Am. Ceram. Soc. 73, 2498 (1990).CrossRefGoogle Scholar
6.Fayeulle, S. and Nastasi, M., J. Appl. Phys. 81, 6703 (1997).CrossRefGoogle Scholar
7.Watanabe, M.O., Sasaki, T., Itoh, S., and Mizushima, K., Thin Solid Films 281–282, 334 (1996).CrossRefGoogle Scholar
8.Badzian, A.R., Niemyski, T., Appenheimer, S., and Olkusnik, E., Proc. 3rd Int. Conf. on Chemical Vapor Deposition, edited by Glaski, F.A. (American Nuclear Society, Hinsdale, IL, 1972), Vol. 3, p. 747.Google Scholar
9.Chen, S.H. and Diefendorf, R.J., Proc. 3rd Int. Carbon Conference, Baden-Baden, 30 June–4 July 1980 (Deutsche keramische Gesellschaft, Baden-Baden, Germany, 1980), p. 44.Google Scholar
10.Kouvetakis, J., Kaner, R. B., Sattler, M. L., and Bartlett, N., J. Chem. Soc., Chem. Commun., 1758 (1986).Google Scholar
11.Kaner, R. B., Kouvetakis, J., Warble, C. E., Sattler, M. L., and Bartlett, N., Mater. Res. Bull. 22, 399 (1987).CrossRefGoogle Scholar
12.Moore, A.W., Proc. 18th Biennial Carbon Conference, Worcester, MA (American Carbon Society, St. Marys, PA, 1987), p. 52.Google Scholar
13.Moore, A.W., Strong, S. L., Doll, G.L., Dresselhaus, M.S., Spain, I. L., Bowers, C. W., Issi, J. P., and Piraux, L., J. Appl. Phys. 65, 5109 (1989).CrossRefGoogle Scholar
14.Kawaguchi, M. and Kawashima, T., J. Chem. Soc., Chem. Commun., 1133 (1993).Google Scholar
15.Watanabe, M.O., Itoh, S., Mizushima, K., and Sassaki, T., J. Appl. Phys. 78, 2880 (1995).CrossRefGoogle Scholar
16.Watanabe, M.O., Itoh, S., Mizushima, K., and Sasaki, T., Appl. Phys. Lett. 68, 2962 (1996).CrossRefGoogle Scholar
17.Chen, Y., Guo, L., Chen, F., and Wang, E. G., J. Phys: Condens. Matter 8, 685 (1996).Google Scholar
18.Chen, Y., Guo, L. P., and Wang, E.G., Philos. Mag. Lett. 75, 155 (1997).CrossRefGoogle Scholar
19.Wu, K., Wang, E. G., Qin, J., and Xu, G., J. Appl. Phys. 83, 1702 (1998).CrossRefGoogle Scholar
20.Berns, D.H. and Cappelli, M. A., J. Mater. Res. 12, 2014 (1997).CrossRefGoogle Scholar
21.Kunzli, H., Gantenbein, P., Steiner, R., and Oelhafen, P., Anal. Chem. 346, 41 (1993).CrossRefGoogle Scholar
22.Deshpande, S.V., Gulari, E., Harris, S.J., and Weiner, A.M., Appl. Phys. Lett. 65, 1757 (1994).CrossRefGoogle Scholar
23.Bando, Y., Nakano, S., and Kurashima, K., J. Electron. Microsc. 45, 135 (1996).CrossRefGoogle Scholar
24.Kouvetakis, J., Sasaki, T., Shen, C., Hagiwara, R., Lerner, M., Krishnan, K.M., and Bartlett, N., Synth. Met. 34, 1 (1989).CrossRefGoogle Scholar
25.Sasaki, T., Akishi, M., Yamaoka, S., Fujiki, Y., and Oikawa, T., Chem. Mater. 5, 695 (1993).CrossRefGoogle Scholar
26.Filipozzi, L., Piraux, L., Marchand, A., Derre, A., Adouard, A., and Kinary-Alaoui, M., J. Mater. Res. 12, 1711 (1997).CrossRefGoogle Scholar