Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T07:16:28.308Z Has data issue: false hasContentIssue false

Synthesis and characterization of 1,2,3,4 tetrahydroquinoline intercalated into MoS2 in search of cleaner fuels

Published online by Cambridge University Press:  31 January 2011

Karina Castillo*
Affiliation:
Department of Chemistry, University of Texas at El Paso, El Paso, Texas 79968
Felicia Manciu
Affiliation:
Department of Physics, University of Texas at El Paso, El Paso, Texas 79968
J.G. Parsons
Affiliation:
Department of Chemistry, University of Texas at El Paso, El Paso, Texas 79968
Russell R. Chianelli
Affiliation:
Department of Chemistry, University of Texas at El Paso, El Paso, Texas 79968
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Two different morphologies of MoS2 (short and long sheets) were utilized to elucidate the intercalation mechanism of 1,2,3,4 tetrahydroquinoline (THQ). MoS2 (short sheets) and molybdenite (MB) (long sheets) were exfoliated and restacked in the presence of THQ. The x-ray diffraction patterns of both samples show a new reflection in the 001 plane, which implies a lowering of symmetry and corresponds to an expansion of the layers by approximately 12.3 Å. In the MoS2-THQ sample, 80% of the MoS2 was intercalated and 20% remained stacked. In the MB-THQ sample, 30% of MB was intercalated while 70% remained stacked. X-ray absorption structure (XAS) studies showed changes in atomic geometry and coordination. The x-ray absorption near-edge spectra showed shifts in the geometry of the intercalated MoS2 and MB sample compared to the unintercalated samples. Extended x-ray absorption fine structure studies showed lower coordination numbers compared to the untreated samples. Infrared spectroscopy characterization of these same samples suggests intercalation and partial dehydrogenation of the THQ.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Chianelli, R.R., Prestridge, E.B., Pecoraro, T.A.DeNeufville, J.P.: Molybdenum disulfide in the poorly crystalline “rag” structure. Science 203, 1105 1979CrossRefGoogle ScholarPubMed
2Takag, S., Murakami, K.Gotoh, T.: Observation of molybdenite using Auger microscope. Appl. Surf. Sci. 144, 278 1999CrossRefGoogle Scholar
3Kertesz, M.Hoffmann, R.: Octahedral vs. trigonal-prismatic coordination and clustering in transition-metal dichalcogenides. J. Am. Chem. Soc. 106, 3453 1984CrossRefGoogle Scholar
4Sie, S.T.: Reaction order and role of hydrogen sulfide in deep hydrodesulfurization of gas oils: consequences for industrial reactor configuration. Fuel Process. Technol. 61, 149 1999CrossRefGoogle Scholar
5Farag, H., Sakanishi, K., Kouzu, M., Matsumura, A., Sugimoto, Y.Saito, I.: Dibenzothiophene hydrodesulfurization over synthesized MoS2 catalysts. J. Mol. Catal. Chem. 206, 399 2003CrossRefGoogle Scholar
6Farag, H.Sakanishi, K.: Investigation of 4,6-dimethyldibenzothiophene hydrodesulfurization over a highly active bulk MoS2 catalyst. J. Catal. 225, 531 2004CrossRefGoogle Scholar
7Orozco, E. OlguinVrinat, M.: Kinetics of dibenzothiophene hydrodesulfurization over MoS2 supported catalysts: modelization of the H2S partial pressure effect. Appl. Catal. Gen. 170, 195 1998CrossRefGoogle Scholar
8de Beer, V.H.J., Dahlmans, J.G.J.Smeets, J.G.M.: Hydrodesulfurization and hydrogenation properties of promoted MoS2 and WS2 catalysts under medium pressure conditions. J. Catal. 42, 467 1976CrossRefGoogle Scholar
9Valyon, J.Hall, W.K.: The chemisorption of O2 and NO on reduced and sulfided molybdena-alumina catalysts. J. Catal. 84, 216 1983CrossRefGoogle Scholar
10Valyon, J., Roger, L.S.Hall, W.K.: Site selective chemisorption on sulfided molybdena-alumina catalysts. J. Catal. 85, 277 1984CrossRefGoogle Scholar
11Derouane, E.G., Pedersen, E., Clausen, B.S., Gabelica, Z., Candia, R.Topsøe, H.: EPR studies on unsupported and alumina-supported sulfided Co–Mo hydrodesulfurization catalysts. J. Catal. 99, 253 1985CrossRefGoogle Scholar
12Shafi, R.Hutchings, G.J.: Hydrodesulfurization of hindered dibenzothiophenes: An overview. Catal. Today. 59, 423 2000CrossRefGoogle Scholar
13Chiang, L.Y., Swirczewski, J.W., Chianelli, R.R.Stiefel, E.I.: Soluble catalyst precursors for dehydrogenative polymerization reaction. Catal. Lett. 1, 177 1988CrossRefGoogle Scholar
14Chiang, L.Y.Chianelli, R.R.: Novel catalytic dehydrogenative polymerization for polyquinoline synthesis. J. Chem. Soc. Commun. 19, 1461 1986CrossRefGoogle Scholar
15Daage, M.Chianelli, R.R.: Structure-function relations in molybdenum sulfide catalysts: the rim-edge model. J. Catal. 149, 414 1994CrossRefGoogle Scholar
16Hodoshima, S., Takaiwa, S., Shono, A., Satoh, K.Saito, Y.: Hydrogen storage by decalin/naphthalene pair and hydrogen supply to fuel cells by use of superheated liquid-film type catalysts. Appl. Catal. Gen. 283, 235 2005CrossRefGoogle Scholar
17Hiyoshi, N., Rode, C.V., Sato, O.Shirai, M.: Biphenyl hydrogenation over supported transition metal catalysts under supercritical carbon dioxide solvent. Appl. Catal. Gen. 288, 43 2005CrossRefGoogle Scholar
18Chianelli, R.R., Berhault, G., Raybaud, P., Kasztelan, S., Hafner, J.Toulhoat, H.: Periodic trends in hydrodesulfurization: In support of the Sabatier principle. Appl. Catal. Gen. 227, 83 2003CrossRefGoogle Scholar
19Powell, V.A., Kosidowski, L.McDowall, A.: Inorganic-organic hybrids by exfoliation of MoS2. J. Mater. Chem. 11, 1086 2001CrossRefGoogle Scholar
20Ressler, T.: WinXAS: A program for x-ray absorption spectroscopy data analysis under MS-Windows. J. Synchrotron Rad. 5, 118 1998CrossRefGoogle ScholarPubMed
21O’Day, P.A., Rehr, J.J., Zabinsky, S.I., Brown, G.E. Jr.: Extended x-ray absorption fine structure (EXAFS) analysis of disorder and multiple-scattering in complex crystalline solids. J. Am. Chem. Soc. 116, 2938 1994CrossRefGoogle Scholar
22Ankudinov, A.L., Ravel, B., Rehr, J.J.Conradson, S.D.: Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure. Phys. Rev. B: Condens. Matter Mater. Phys. 58, 7565 1998CrossRefGoogle Scholar
23Ravel, B.: ATOMS: Crystallography for the x-ray absorption spectroscopist. J. Synchrotron Rad. 8, 314 2001CrossRefGoogle ScholarPubMed
24Heising, J.Kanatzidis, M.G.: Structure of restacked MoS2 and WS2 elucidated by electron crystallography. J. Am. Chem. Soc. 121, 638 1999CrossRefGoogle Scholar
25Julien, C.M.: Lithium intercalated compounds charge transfer and related properties. Mater. Sci. Eng. 40, 47 2003CrossRefGoogle Scholar
26Dungey, E.K., Curtis, D.M.Penner-Hahn, E.J.: Structural characterization and thermal stability of MoS2 intercalation compounds. Chem. Mater. 10, 2152 1998CrossRefGoogle Scholar
27Benavente, E., Ana, M.A. SantaGonzález, F.G. Mendizábal: Intercalation chemistry of molybdenum disulfide. Coord. Chem. Rev. 224, 87 2002CrossRefGoogle Scholar
28Dickinson, R.G.Pauling, L.: The crystal ztructure of molybdenite. J. Am. Chem. Soc. 45, 1466 1923CrossRefGoogle Scholar
29Cheung, E.Y., Harris, K.M.Foxman, B.M.: A straightforward and effective procedure to test for preferred orientation in polycrystalline samples prior to structure determination from powder diffraction data. Cryst. Growth Des. 3, 705 2003CrossRefGoogle Scholar
30Matsubayashi, N., Shimada, H., Sat, T., Yoshimura, Y., Imamura, M.Nishijima, A.: Structural change of supported Ni–Mo sulfide catalysis during the hydrogenation of coal-derived liquids. Fuel Process. Technol. 41, 261 1995CrossRefGoogle Scholar
31Joensen, P., Crozier, E.D., Alberding, N.Frindt, F.R.: A study of single-layer and restacked MoS2 by x-ray diffraction and x-ray absorption spectroscopy. J. Phys. C: Solid State Phys. 20, 4043 1987CrossRefGoogle Scholar
32Mirabal, N., Lavayen, V., Benavente, E., Ana, A.A. SantaGonzalez, G.: Synthesis and functionalization and properties of intercalation compounds. Microelectron. J. 35, 37 2004CrossRefGoogle Scholar
33Chianelli, R.R., Scanlon, J.C.Rao, B.M.L.: In situ studies of electrode reactions: The mechanism of lithium intercalation in TiS2. J. Solid State Chem. 29, 323 1979CrossRefGoogle Scholar
34Siaditi, M., de Rosa, M. Perez la, Berhault, G., Wilcoxon, J., Bearden, R.Abrams, B.: Catalytic properties of single layers of transition metal sílfide catalytic materials. Catal. Rev. 48, 1 2006Google Scholar
35Smith, G.W.: Crystal structure of orthorhombic cobalt molybdate. Nature 188, 306 1960CrossRefGoogle Scholar
36Abrahams, S.C.Reddy, J.M.: Crystal structure of the transition-metal molybdates. I. Paramagnetic α-MnMoO4. J. Chem. Phys. 43, 2533 1965CrossRefGoogle Scholar
37Birch, W.D., Pring, A., McBriar, E.M., Gatehouse, B.M.McCammon, C.A.: Bamfordite Fe3+Mo2O6 (OH)3⋅H2O, a new hydrated iron molybdenum oxyhydroxide from Queensland, Australia: Description and crystal chemistry. Am. Mineral. 83, 172 1998CrossRefGoogle Scholar
38Chen, S.H.: Group-theoretical analysis of lattice vibrations in metallic β–Sn. Phys. Rev. 163, 532 1967CrossRefGoogle Scholar
39Chang, C.H.Chang, S.S.: Infrared and Raman studies of amorphous MoS3 and poorly crystalline MoS2. J. Catal. 72, 139 1981CrossRefGoogle Scholar
40Wilson, J.A.Yoffe, A.D.: The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18, 193 1969CrossRefGoogle Scholar
41Conley, T.R.: Infrared Spectroscopy, Allyn and Bacon, Boston, MA 1966 96–109Google Scholar
42Amateis, G.P.Taylor, T.L.: Determination of basic nitrogen compounds in coal-derived products by microbe liquid chromatography with Fourier Transform infrared spectrometric detection. Anal. Chem. 56, 966 1984CrossRefGoogle Scholar