Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-09T21:27:29.472Z Has data issue: false hasContentIssue false

Synergistic effect of crystalline metal on the plasticity of bulk metallic glasses under uniaxial synchro-compression

Published online by Cambridge University Press:  31 January 2011

Lin He*
Affiliation:
State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
Jun Sun
Affiliation:
State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A uniaxial synchro-compression test of a cylindrical bulk metallic glass (BMG) specimen along with a crystalline metallic ring having an inner diameter much larger than the specimen’s diameter and thereby without radial confinement on the BMG specimen was performed. The plastic deformation behavior of a conventional Zr65Cu17.5Ni10Al7.5 BMG under synchro-compression with a cupper ring was investigated. It was found that remarkably plastic deformation in the inherently brittle BMG could occur under the uniaxial stress state as the loading area of the cupper ring was sufficiently large, and multiplication of the shear band on the synergistically deformed BMG specimen could be accomplished. The synergistic effect of the crystalline metal on the plastic deformation behavior of the BMG was attributed to the reduced thermal softening extent inside the shear bands that resulted from the restraining effect of the copper ring on the spring-back action of the testing machine.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Inoue, A. and Takeuchi, A.: Recent progress in bulk glassy, nanoquasicrystalline and nanocrystalline alloys. Mater. Sci. Eng., A 375–377, 16 (2004).CrossRefGoogle Scholar
2.He, L., Zhong, M.B., Han, Z.H., Zhao, Q., Jiang, F., and Sun, J.: Orientation effect of pre-introduced shear bands in a bulkmetallic glass on its “work-ductilising”. Mater. Sci. Eng., A 496, 285 (2008).CrossRefGoogle Scholar
3.Wu, F.F., Zhang, Z.F., and Mao, S.X.: Size-dependent shear fracture and global tensile plasticity of metallic glasses. Acta Mater. 57, 257 (2009).CrossRefGoogle Scholar
4.Zhang, Y. and Greer, A.L.: Thickness of shear bands in metallic glasses. Appl. Phys. Lett. 89, 071907 (2006).CrossRefGoogle Scholar
5.Bei, H., Xie, S., and George, E.P.: Softening caused by profuse shear banding in a bulk metallic glass. Phys. Rev. Lett. 96, 105503 (2006).CrossRefGoogle Scholar
6.Shi, Y., Katz, M.B., Li, H., and Falk, M.L.: Evaluation of the disorder temperature and free-volume formalisms via simulations of shear banding in amorphous solids. Phys. Rev. Lett. 98, 185505 (2007).CrossRefGoogle ScholarPubMed
7.Wright, W.J., Schwarz, R.B., and Nix, W.D.: Localized heating during serrated plastic flow in bulk metallic glasses. Mater. Sci. Eng., A 319–321, 229 (2001).CrossRefGoogle Scholar
8.Lewandowski, J.J. and Greer, A.L.: Temperature rise at shear bands in metallic glasses. Nat. Mater. 5, 15 (2006).CrossRefGoogle Scholar
9.Jiang, W.H., Fan, G.J., Liu, F.X., Wang, G.Y., Choo, H., and Liaw, P.K.: Spatiotemporally inhomogeneous plastic flow of a bulk-metallic glass. Int. J. Plast. 24, 1 (2008).CrossRefGoogle Scholar
10.Jiang, W.H., Liu, F.X., Liaw, P.K., and Choo, H.: Shear strain in a shear band of a bulk-metallic glass in compression. Appl. Phys. Lett. 90, 181903 (2007).CrossRefGoogle Scholar
11.Chen, M.W.: Mechanical behavior of metallic glasses: Microscopic understanding of strength and ductility. Annu. Rev. Mater. Res. 38, 445 (2008).CrossRefGoogle Scholar
12.Wang, K., Fujita, T., Zeng, Y.Q., Nishiyama, N., Inoue, A., and Chen, M.W.: Micromechanisms of serrated flow in a Ni50Pd30P20 bulk metallic glass with a large compression plasticity. Acta Mater. 56, 2834 (2008).CrossRefGoogle Scholar
13.Chen, M.W., Inoue, A., Zhang, W., and Sakurai, T.: Extraordinary plasticity of ductile bulk metallic glasses. Phys. Rev. Lett. 96, 245502 (2006).CrossRefGoogle ScholarPubMed
14.Wang, G., Liu, Y.H., Yu, P., Zhao, D.Q., Pan, M.X., and Wang, W.H.: Structural evolution in TiCu-based bulk metallic glass with large compressive plasticity. Appl. Phys. Lett. 89, 251909 (2006).CrossRefGoogle Scholar
15.Lee, S.W., Huh, M.Y., Fleury, E., and Lee, J.C.: Crystallizationinduced plasticity of Cu–Zr containing bulk amorphous alloys. Acta Mater. 54, 349 (2006).CrossRefGoogle Scholar
16.Hajlaoui, K., Yavari, A.R., Doisneau, B., LeMoulec, A., Botta, W.J., Vaughan, F.G., Greer, A.L., Inoue, A., Zhang, W., and Kvick, Å.: Shear delocalization and crack blunting of a metallic glass containing nanoparticles: In situ deformation in TEM analysis. Scr. Mater. 54, 1829 (2006).CrossRefGoogle Scholar
17.Chang, H.J., Kim, D.H., Kim, Y.M., Kim, Y.J., and Chattopadhyay, K.: On the origin of nanocrystals in the shear band in a quasicrystal forming bulk metallic glass Ti40Zr29Cu9 Ni8Be14. Scr. Mater. 55, 509 (2006).CrossRefGoogle Scholar
18.Kumar, G., Ohkubo, T., Mukai, T., and Hono, K.: Plasticity and microstructure of Zr–Cu–Al bulk metallic glasses. Scr. Mater. 57, 173 (2007).CrossRefGoogle Scholar
19.Lu, J. and Ravichandran, G.: Pressure-dependent flow behavior of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass. J. Mater. Res. 18, 2039 (2003).CrossRefGoogle Scholar
20.Yu, P., Liu, Y.H., Wang, G., Bai, H.Y., and Wang, W.H.: Enhance plasticity of bulk metallic glasses by geometric confinement. J. Mater. Res. 22, 2384 (2007).CrossRefGoogle Scholar
21.Martin, M., Kecskes, L., and Thadhani, N.N.: Dynamic compression of a zirconium-based bulk metallic glass confined by a stainless steel sleeve. Scr. Mater. 59, 688 (2008).CrossRefGoogle Scholar
22.Bengus, V.Z., Tabachnikova, E.D., Shumilin, S.E., Golovin, Y.I., Makarov, M.V., Shibkov, A.A., Miškuf, J., Csach, K., and Ocelik, V.: Some peculiarities of ductile shear failure of amorphous alloy ribbons. Int. J. Rapid Solid. 8, 21 (1993).Google Scholar
23.Torre, F.H. Dalla, Dubach, A., J. Schällibaum, and L, J.F.öffler: Shear striations and deformation kinetics in highly deformed Zr-based bulk metallic glasses. Acta Mater. 56, 4635 (2008).CrossRefGoogle Scholar
24.Hufnagel, T.C., Jiao, T., Li, Y., Xing, L.Q., and Ramesh, K.T.: Deformation and failure of Zr57Ti5Cu20Ni8Al10 bulk metallic glass under quasi-static and dynamic compression. J. Mater. Res. 17, 1441 (2002).CrossRefGoogle Scholar
25.Yang, B., Morrison, M.L., Liaw, P.K., Buchanan, R.A., Wang, G., Liu, C.T., and Denda, M.: Dynamic evolution of nanoscale shear bands in a bulk-metallic glass. Appl. Phys. Lett. 86, 141904 (2005).CrossRefGoogle Scholar
26.Kimura, H. and Masumoto, T.: A model of the mechanics of serrated flow in an amorphous alloy. Acta Mater. 31, 231 (1983).CrossRefGoogle Scholar
27.Xie, S. and George, E.P.: Size-dependent plasticity and fracture of a metallic glass in compression. Intermetallics 16, 485 (2008).CrossRefGoogle Scholar
28.Han, Z.H., He, L., Zhong, M.B., and Hou, Y.L.: Dual specimen-size dependences of plastic deformation behavior of a traditional Zr-based bulk metallic glass in compression. Mater. Sci. Eng., A 513–514, 344 (2009).CrossRefGoogle Scholar
29.Inoue, A., Zhang, T., Nishiyama, N., Ohba, K., and Masumoto, T.: Preparation of 16 mm diameter rod of amorphous Zr65Al7.5 Ni10Cu17.5 alloy. Mater. Trans., JIM 34, 1234 (1993).CrossRefGoogle Scholar
30.Song, S.X., Bei, H., Wadsworth, J., and Nieh, T.G.: Flow serration in a Zr-based bulk metallic glass in compression at low strain rates. Intermetallics 16, 813 (2008).CrossRefGoogle Scholar
31.Han, Z., Wu, W.F., Li, Y., Wei, Y.J., and Gao, H.J.: An instability index of shear band for plasticity in metallic glasses. Acta Mater. 57, 1367 (2009).CrossRefGoogle Scholar
32.Spaepen, F.: A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407 (1977).CrossRefGoogle Scholar
33.Spaepen, F.: Homogeneous flow of metallic glasses: A free volume perspective. Scr. Mater. 54, 363 (2006).CrossRefGoogle Scholar
34.Chen, N., Louzguine-Luzgin, D.V., Xie, G.Q., Wada, T., and Inoue, A.: Influence of minor Si addition on the glass-forming ability and mechanical properties of Pd40Ni40P20 alloy. Acta Mater. 57, 2775 (2009).CrossRefGoogle Scholar
35.Kusy, M., U. Kühn, Concustell, A., Gebert, A., Das, J., Eckert, J., Schultz, L., and Baro, M.D.: Fracture surface morphology of compressed bulk metallic glass-matrix-composites and bulk metallic glass. Intermetallics 14, 982 (2006).CrossRefGoogle Scholar
36.Eckert, J., Das, J., Pauly, S., and Duhamel, C.: Mechanical properties of bulk metallic glasses and composites. J. Mater. Res. 22, 285 (2007).CrossRefGoogle Scholar
37.Han, Z.H., He, L., Hou, Y.L., Feng, J., and Sun, J.: Understanding the mechanism for the embrittlement of a monolithic Zrbased bulk metallic glass by oxygen. Intermetallics 17, 553 (2009).CrossRefGoogle Scholar