Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-27T00:19:50.212Z Has data issue: false hasContentIssue false

Synchrotron x-ray μ-tomography to model the thermal radiative properties of an opaque ceramic coating at T = 1000 K

Published online by Cambridge University Press:  31 January 2011

D. Zanghi
Affiliation:
Conditions Extrêmes et Matériaux: Haute Température et Irradiation, 45071 Orléans, France
D. Bernard
Affiliation:
Institut de Chimie de la Matière Condensée de Bordeaux, 33608 Pessac, France
M. Stampanoni
Affiliation:
Swiss Light Source (SLS), Paul Sherrer Institute (PSI), Villigen, Switzerland; and Institute for Biomedical Engineering, University and Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
Get access

Abstract

Synchrotron x-ray μ-tomography has been used to reconstruct the three-dimensional view of a rough surface extracted from a heterogeneous ceramic coating composed of Pr2NiO4+δ. Radiographs with a resolution of 0.7 μm have been recorded at T = 300, 600, and 900 K. The analysis of surface geometry makes use of the geometrical optic approximation up to T = 900 K possible. Subsequently, a large number of rays (105) are impinged onto the numerical surface, as revealed by x-ray tomography, to reproduce the normal emissivity of the coating. This normal emissivity was obtained beforehand by infrared emittance spectroscopy at T = 1000 K. Comparison of the two approaches suggests that the optical contribution of the coating micropores can be integrated into the ray tracing code. The effective medium approximation is used for this purpose. Finally, the applicability of this hybrid approach is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tang, K., Buckius, R.O.A statistical model of wave scattering from random rough surfaces. Int. J. Heat Mass Transfer 44, 2001 (2001)CrossRefGoogle Scholar
2.Bergstrom, D., Powell, J., Kaplan, F.H.The absorption of light by rough metal surfaces—A three-dimensional ray-tracing analysis. J. Appl. Phys. 103, 103515 (2008)CrossRefGoogle Scholar
3.Gomart, H.Modeling of thermal radiative properties of high emissive coatings Ph.D. Thesis University of Orléans, France 2008Google Scholar
4.Van Geet, M., Swennen, R.Quantitative 3D-fracture analysis by means of microfocus x-ray computer tomography (μCT): An example from coal. Geophys. Res. Lett. 28, 3333 (2001)Google Scholar
5.Gouze, P., Noiriel, C., Bruderer, C., Loggia, D., Leprovost, R.X-ray tomography characterization of fracture surfaces during dissolution. Geophys. Res. Lett. 30, 1267 (2003)CrossRefGoogle Scholar
6.Proudhon, H., Buffière, J-Y., Fouvry, S.Characterisation of fretting fatigue damage using synchrotron x-ray micro-tomography. Tribol. Int. 39, 1106 (2006)Google Scholar
7.Laforsch, C., Christoph, E., Glaser, C., Naumann, M., Wild, C., Niggl, W.A precise and non-destructive method to calculate the surface area in living scleractinian corals using x-ray computed tomography and 3D modeling. Coral Reefs 27, 811 (2008)CrossRefGoogle Scholar
9.Ogivily, J.A.Theory of Wave Scattering from Random Rough Surfaces 1st ed. (Taylor and Francis, Bristol 1991)292Google Scholar
10.Gomart, H., Rousseau, B., De Sousa Meneses, D., Echegut, P.Multiscale approach for predicting the radiative behavior of opaque ceramics with micro and macro scale heterogeneities. J. Appl. Phys. (Submitted)Google Scholar
11.Rousseau, B., Gomart, H., De Sousa Meneses, D., Echegut, P., Rieu, M., Dugas, R., Lenormand, P., Ansart, F.Modelling of the radiative properties of a porous ceramic layer. J. Electr. Ceram. (accepted), DOI: 10.1007/s10832-009-9595-6Google Scholar
12.Rousseau, B., Sin, A., Odier, P., Weiss, F., Echegut, P.High emissivity of a rough Pr2NiO4 coating. Appl. Phys. Lett. 79, 3633 (2001)Google Scholar
13.Stampanoni, M., Groso, A., Isenegger, A., Mikuljan, G., Chen, Q., Bertrand, A., Henein, S., Betemps, R., Frommherz, U., Böhler, P., Meister, D., Lange, M., Abela, R.Developments in x-ray tomographyProc. SPIE Vol. 6318 edited by U. Bonse (San Diego, CA August 13–17 2006)63180M114Google Scholar
15.NISTX-ray form factor, attenuation, and scattering tables http://physics.nist.gov/PhysRefData/FFast/html/form.html Accessed October 1 2009Google Scholar
16.Fu, K., Hsu, P.F.New regime map of the geometric optics approximation for scattering from random rough surfaces. J. Quant. Spectrosc. Radiat. Transfer 109, 180 (2008)CrossRefGoogle Scholar
17.Lee, H.J., Chen, Y.B., Zhang, Z.M.Directional radiative properties of anisotropic rough silicon and gold surfaces. Int. J. Heat Mass Transfer 49, 4482 (2006)Google Scholar
18.Rousseau, B., De Sousa Meneses, D., Echegut, P., Di Michiel, M., Thovert, J.F.Prediction of the thermal radiative properties of an x-ray-tomographied porous silica glass. Appl. Opt. 46, 4266 (2007)CrossRefGoogle ScholarPubMed
19.Born, M., Wolf, E.Principle of Optics, Electromagnetic, Theory of Propagation, Interference and Diffraction Light 7th ed. (Cambridge Univ. Press, Cambridge 1999)170Google Scholar
20.Rousseau, B., De Sousa Meneses, D., Blin, A., Echegut, P., Chabin, M., Odier, P., Gervais, F.High-temperature behavior of infrared conductivity of a Pr2NiO4+δ single crystal. Phys. Rev. B 72, 104114 (2005)Google Scholar
21.Rousseau, B., Brun, J.F., De Sousa Meneses, D., Echegut, P.Temperature measurement: Christiansen wavelength and blackbody reference. Int. J. Thermophys. 26, 1277 (2005)CrossRefGoogle Scholar
22.Aspnes, D.E., Theeten, J.B., Hottier, F.Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry. Phys. Rev. B 20, 3292 (1979)CrossRefGoogle Scholar
23.Rousseau, B., Canizares, A., Véron, E., Ramy-Ratiarison, R., Blin, A., De Sousa Meneses, D., Simon, P., Berberich, F., Graafsma, H., Pomar, A., Mestres, N., Puig, T., Obradors, X.Characterization of YBa2Cu3O6+x films grown by the trifluoro-acetate metal organic decomposition route by infrared spectroscopy. Thin Solid Films 515, (4)1607 (2006)CrossRefGoogle Scholar
24.Braun, M.M., Pilon, L.Effective optical properties of non-absorbing nanoporous thin films. Thin Solid Films 496, 505 (2006)Google Scholar