Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-05T14:43:44.516Z Has data issue: false hasContentIssue false

Surfactant-assisted hydrothermal process, shape-control, and photoluminescence of Eu3+-doped lutetium tungstate microspheres

Published online by Cambridge University Press:  01 January 2011

Fang Lei
Affiliation:
Department of Chemistry, Tongji University, Shanghai 200092, China
Bing Yan*
Affiliation:
Department of Chemistry, Tongji University, Shanghai 200092, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Three-dimensional (3D) sphere-like Eu3+-doped white light lutetium tungstate phosphors have been fabricated by the cationic surfactant cetyltrimethyl ammonium bromide (CTAB)-assisted hydrothermal method, which presents a diameter of ∼2-μm morphology assembled by nanoflakes with a length of 100 to ∼200 nm. The results demonstrate that CTAB, suitable pH values, reaction time, and reaction temperature are all essential for the formation of lutetium tungstate microspheres. Photoluminescence measurement indicates that lutetium tungstate microspheres show a broad O–W Charge transfer state (CTS) transition and the characteristic emission of Eu3+ at ∼591 and ∼611 nm.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Luo, Z.J., Li, H.M., Shu, H.M., Wang, K., Xia, J.X., and Yan, Y.S.: Synthesis of BaMoO4 nestlike nanostructures under a new growth mechanism. Cryst. Growth Des. 8, 2275 (2008).CrossRefGoogle Scholar
2.Li, C.X., Quan, Z.W., Yang, P.P., Huang, S.S., Lian, H.Z., and Lin, J.: Shape-controllable synthesis and upconversion properties of lutetium fluoride (doped with Yb3+/Er3+) microcrystals by hydrothermal process. J. Phys. Chem. C 112, 13395 (2008).CrossRefGoogle Scholar
3.Zhou, L., Wang, W.Z., Xu, H.L., and Sun, S.M.: Template-free fabrication of CdMoO4 hollow spheres and their morphology-dependent photocatalytic property. Cryst. Growth Des. 8, 3595 (2008).CrossRefGoogle Scholar
4.Kiebach, R., Pienack, N., Bensch, W., Grunwaldt, J.D., Michailovski, A., Baiker, A., Fox, T., Zhou, Y., and Patzke, G.R.: Hydrothermal formation of W/Mo-oxides: A multidisciplinary study of growth and shape. Chem. Mater. 20, 3022 (2008).CrossRefGoogle Scholar
5.Zhao, H.Y., Wang, Y.F., and Zeng, J.H.: Hydrothermal synthesis of uniform cuprous oxide microcrystals with controlled morphology. Cryst. Growth Des. 8, 3731 (2008).CrossRefGoogle Scholar
6.Geng, J., Lu, D.J., Zhu, J.J., and Chen, H.Y.: Antimony(III)-doped PbWO4 crystals with enhanced photoluminescence via a shape-controlled sonochemical route. J. Phys. Chem. B 110, 13777 (2006).CrossRefGoogle Scholar
7.Wang, X., Zhuang, J., Peng, Q., and Li, Y.D.: Hydrothermal synthesis of rare-earth fluoride nanocrystals. Inorg. Chem. 45, 6661 (2006).CrossRefGoogle ScholarPubMed
8.Sun, S.H., Yang, D.Q., Villers, D., Zhang, G.X., Sacher, E., and Dodelet, J.P.: Template- and surfactant-free room temperature synthesis of self-assembled 3D pt nanoflowers from single-crystal nanowires. Adv. Mater. 20, 571 (2008).CrossRefGoogle Scholar
9.Song, R.Q., Xu, A.W., and Yu, S.H.: Layered copper metagermanate nanobelts: Hydrothermal synthesis, structure, and magnetic properties. J. Am. Chem. Soc. 129, 4152 (2007).CrossRefGoogle ScholarPubMed
10.Liang, J.H., Peng, Q., Wang, X., Zheng, X., Wang, R.J., Qiu, X.P., Nan, C.W., and Li, Y.D.: Chromate nanorods/nanobelts: General synthesis, characterization, and properties. Inorg. Chem. 44, 9405 (2005).CrossRefGoogle ScholarPubMed
11.Lei, F. and Yan, B.: Hydrothermal synthesis and luminescence of CaMO4: RE3+ (M = W, Mo; RE = Eu, Tb) submicro-phosphors. J. Solid State Chem. 181, 855 (2008).CrossRefGoogle Scholar
12.Lei, F., Yan, B., and Chen, H.H.: Solid-state synthesis, characterization and luminescent properties of Eu3+-doped gadolinium tungstate and molybdate phosphors: Gd(2–x)MO6:Eux 3+ (M = W, MO). J. Solid State Chem. 181, 2845 (2008).CrossRefGoogle Scholar
13.Wang, K.P., Zhang, J.X., Wang, J.Y., Yu, W.T., Zhang, H.J., Wang, Z.P., Wang, X.P., and Ba, M.F.: Predicted and real habits of flux grown potassium lutetium tungstate single crystals. Cryst. Growth Des. 5, 1555 (2005).CrossRefGoogle Scholar
14.Wang, Z., Li, X., Wang, G., Song, M., Wei, Q., Wang, G., and Long, X.: Growth and spectral properties of Tm3+/Er3+:NaGd(MoO4)2 single crystal. J. Lumin. 128, 451 (2008).CrossRefGoogle Scholar
15.Maczka, M., Kermanowicz, K., Tomaszewski, P.E., Zawadzki, M., and Hanuza, J.: Synthesis and characterization of NaIn(WO4)2:Cr3+ nanoparticles. Solid State Sci. 10, 61 (2008).CrossRefGoogle Scholar
16.Sole, R., Silvestre, O., Massons, J., Gavalda, J., and Díaz, F.: Physical properties of the 0.12 KLu(WO4)2–0.88 K2W2O7 solution and single-crystal growth of KLu(WO4)2. J. Cryst. Growth 310, 1167 (2008).CrossRefGoogle Scholar
17.Han, X.M., García-Cortés, A., Serrano, M.D., Zaldo, C., and Cascales, C.: Structural and thermal properties of tetragonal double tungstate crystals intended for ytterbium laser composites. Chem. Mater. 19, 3002 (2007).CrossRefGoogle Scholar
18.Petrov, V., Pujol, M.C., Mateos, X., Silvestre, O., Rivier, S., Aguiló, M., Solé, R.M., Liu, J.H., Griebner, U., and Díza, F.: Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host. Laser Photonics Rev. 1, 179 (2007).CrossRefGoogle Scholar
19.Nazarov, M.V., Tsukerblat, B.S., Popovici, E.J., and Jeon, D.Y.: Optical lines in europium-terbium double activated calcium tungstate phosphor. Phys. Lett. A 330, 291 (2004).CrossRefGoogle Scholar
20.Wen, F.S., Zhao, X., Huo, H., Chen, J.S., Lin, E.S., and Zhang, J.H.: Hydrothermal synthesis and photoluminescent properties of ZnWO4 and Eu3+-doped ZnWO4. Mater. Lett. 55, 152 (2002).CrossRefGoogle Scholar
21.Dai, Q.L., Song, H.W., Bai, X., Pan, G.H., Lu, S.Z., Wang, T., Ren, X.G., and Zhao, H.F.: Photoluminescence properties of ZnWO4: Eu3+ nanocrystals prepared by a hydrothermal method. J. Phys. Chem. C 111, 7586 (2007).CrossRefGoogle Scholar
22.Huang, J.P., Luo, H.S., Yu, X.B., Li, Y.K., and Zou, W.L.: White-light emission derived from yttrium tun state-chloride xerogel without activator ions. J. Lumin. 128, 589 (2008).CrossRefGoogle Scholar
23.Lei, F. and Yan, B.: Morphology-controlled synthesis, physical characterization, and photoluminescence of novel self-assembled pomponlike white light phosphor: Eu3+-doped sodium gadolinium tungstate. J. Phys. Chem. C 113, 1074 (2009).CrossRefGoogle Scholar
24.Lei, F., Yan, B., Chen, H.H., and Zhao, J.T.: Template-directed route to fabricate Eu3+-doped white light hydroxyl sodium yttrium tungstate monodisperse microarchitectures and their conversion to NaY(WO4)2. Inorg. Chem. 48, 7576 (2009).CrossRefGoogle Scholar
25.Zhu, L.P., Zhang, W.D., Xiao, H.M., Yang, Y., and Fu, S.Y.: Facile synthesis of metallic Co hierarchical nanostructured microspheres by a simple solvothermal process. J. Phys. Chem. C 112, 10073 (2008).CrossRefGoogle Scholar
26.Wang, L.Z., Zhang, J.L., Chen, F., and Anpo, M.: Fluoride-induced reduction of CTAB template amount for the formation of MCM-48 mesoporous molecular sieve. J. Phys. Chem. C 111, 13648 (2007).CrossRefGoogle Scholar
27.Xie, Q., Dai, Z., Huang, W.W., Liang, J.B., Jiang, C.L., and Qian, Y.T.: Synthesis of ferromagnetic single-crystalline cobalt nanobelts via a surfactant-assisted hydrothermal reduction process. Nanotechnology 16, 2958 (2005).CrossRefGoogle Scholar
28.Li, R.F., Luo, Z.T., and Papadimitrakopoulos, F.: Redox-assisted asymmetric Ostwald ripening of CdSe dots to rods. J. Am. Chem. Soc. 128, 6280 (2006).CrossRefGoogle ScholarPubMed
29.Yang, H.G. and Zeng, H.C.: Preparation of hollow anatase TiO2 nanospheres via Ostwald ripening. J. Phys. Chem. B 108, 3492 (2004).CrossRefGoogle ScholarPubMed
30.Fan, W., Morozumi, K., Kimura, R., Yokoi, T., and Okubo, T.: Synthesis of nanometer-sized sodalite without adding organic additives. Langmuir 24, 6952 (2008).CrossRefGoogle ScholarPubMed
31.Stabel, A., Herna, R., Schryver, F.C.D., and Rabe, J.P.: Ostwald repening of 2-dimensional crystals at the solid-liquid interface. J. Phys. Chem. 99, 505 (1995).CrossRefGoogle Scholar
32.Epifani, M., Arbiol, J., Pellicer, E., and Morante, J.R.: Growth of CdSe nanocrystals by a catalytic redox activation of Ostwald ripening: A case study of the concept of traveling solubility perturbation. Chem. Mater. 19, 4919 (2007).CrossRefGoogle Scholar
33.Hoang, T.K.N., Deriemaeker, L., La, V.B., and Finsy, R.: Monitoring the simultaneous Ostwald ripening and solubilization of emulsions. Langmuir 20, 8966 (2004).CrossRefGoogle ScholarPubMed
34.Zhang, J., Wang, Y.H., Zheng, J.S., Huang, F., Chen, D.G., Lan, Y.Z., Ren, G.Q., Lin, Z., and Wang, C.: Oriented attachment kinetics for ligand capped nanocrystals: Coarsening of thiol-PbS nanoparticles. J. Phys. Chem. B 111, 1449 (2007).CrossRefGoogle ScholarPubMed
35.Tas, A.C.: Molten salt synthesis of calcium hydroxyapatite whiskers. J. Am. Ceram. Soc. 84, 295 (2001).CrossRefGoogle Scholar
36.Busca, G.: Differentiation of mono-oxo and polyoxo and of monomeric and polymeric vanadate, molybdate and tungstate species in metal oxide catalysts by IR and Raman spectroscopy. J. Raman Spectrosc. 33, 348 (2002).CrossRefGoogle Scholar