Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T01:34:28.708Z Has data issue: false hasContentIssue false

Surface treatment of titanium by anodization and iron deposition: mechanical and biological properties

Published online by Cambridge University Press:  26 May 2020

Murali Krishna Duvvuru
Affiliation:
Department of Mechanical Engineering, Northern Illinois University, DeKalb, Illinois 60115, USA
Lupeng Wu
Affiliation:
Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, USA
Nicole S. Lin
Affiliation:
Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, USA
Tao Xu
Affiliation:
Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, USA
Sahar Vahabzadeh*
Affiliation:
Department of Mechanical Engineering, Northern Illinois University, DeKalb, Illinois 60115, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Surface modification of titanium and titanium alloys is a common method to improve anchoring of bone tissue and implants in hard tissue engineering applications. In the current work, a combination of chemical and physical methods (anodization and physical vapor deposition) was used to roughen the titanium surface and deposit iron (Fe) on the surface of titanium at different thicknesses. The optimized thickness of 100 Å was selected for mechanical and biological characterization. We found that anodization increases the surface roughness of Ti from 21 ± 0 to 229 ± 9 nm, whereas Fe deposition does not change it significantly. Our results also showed that surface modification of Ti by anodization increases the proliferation of osteosarcoma cells at both time points, whereas Fe-deposited samples showed the lowest cellular activity. These results suggest that Fe-deposited Ti implants may be suitable candidates for patients with osteosarcoma, as the proliferation of malignant cells decreases in the presence of Fe.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Manivasagam, G., Singh, A.K., Rajamanickam, A., and Gogia, A.: Ti based biomaterials, the ultimate choice for orthopaedic implants: A review. Prog. Mater. Sci. 54, 397425 (2009).Google Scholar
Suska, F., Emanuelsson, L., Johansson, A., Tengvall, P., and Thomsen, P.: Fibrous capsule formation around titanium and copper. J. Biomed. Mater. Res. 85, 888896 (2008).CrossRefGoogle Scholar
Jemat, A., Ghazali, M.J., Razali, M., and Otsuka, Y.: Surface modifications and their effects on titanium dental implants. BioMed Res. Int. 2015, 111 (2015).CrossRefGoogle ScholarPubMed
Cha, M-A., Shin, C., Kannaiyan, D., Jang, Y.H., Kochuveedu, S.T., Ryu, D.Y., and Kim, D.H.: A versatile approach to the fabrication of TiO2 nanostructures with reverse morphology and mesoporous Ag/TiO2 thin films via cooperative PS-b-PEO self-assembly and a sol–gel process. J. Mater. Chem. 19, 72457250 (2009).CrossRefGoogle Scholar
Camargo, W.A., Takemoto, S., Hoekstra, J.W., Leeuwenburgh, S.C.G., Jansen, J.A., van den Beucken, J.J.J.P., and Alghamdi, H.S.: Effect of surface alkali-based treatment of titanium implants on ability to promote in vitro mineralization and in vivo bone formation. Acta Biomater. 57, 511523 (2017).CrossRefGoogle ScholarPubMed
Jain, S., Scott Williamson, R., and Roach, M.D.: Surface characterization, shear strength, and bioactivity of anodized titanium prepared in mixed-acid electrolytes. Surf. Coat. Technol. 325, 594603 (2017).10.1016/j.surfcoat.2017.07.010CrossRefGoogle Scholar
Rahman, Z.U., Shabib, I., and Haider, W.: Surface characterization and cytotoxicity analysis of plasma sprayed coatings on titanium alloys. Mater. Sci. Eng., C 67, 675683 (2016).CrossRefGoogle ScholarPubMed
Hempel, F., Finke, B., Zietz, C., Bader, R., Weltmann, K-D., and Polak, M.: Antimicrobial surface modification of titanium substrates by means of plasma immersion ion implantation and deposition of copper. Surf. Coat. Technol. 256, 5258 (2014).CrossRefGoogle Scholar
Hung, K-Y., Lai, H-C., Feng, H-P., Hung, K-Y., Lai, H-C., and Feng, H-P.: Characteristics of RF-sputtered thin films of calcium phosphate on titanium dental implants. Coatings 7, 126135 (2017).CrossRefGoogle Scholar
Roy, M., Bandyopadhyay, A., and Bose, S.: Induction plasma sprayed nano hydroxyapatite coatings on titanium for orthopaedic and dental implants. Surf. Coat. Technol. 205, 27852792 (2011).CrossRefGoogle ScholarPubMed
El-wassefy, N.A., Hammouda, I.M., Habib, A.N.E.A., El-awady, G.Y., and Marzook, H.A.: Assessment of anodized titanium implants bioactivity. Clin. Oral Implants Res. 25, e1e9 (2014).10.1111/clr.12031CrossRefGoogle ScholarPubMed
Zhang, Y., Luo, R., Tan, J., Wang, J., Lu, X., Qu, S., Weng, J., and Feng, B.: Osteoblast behaviors on titania nanotube and mesopore layers. Regen. Biomater. 4, 8187 (2017).Google ScholarPubMed
Lv, L., Liu, Y., Zhang, P., Zhang, X., Liu, J., Chen, T., Su, P., Li, H., and Zhou, Y.: The nanoscale geometry of TiO2 nanotubes influences the osteogenic differentiation of human adipose-derived stem cells by modulating H3K4 trimethylation. Biomaterials 39, 193205 (2015).10.1016/j.biomaterials.2014.11.002CrossRefGoogle ScholarPubMed
Oh, S., Brammer, K.S., Li, Y.S.J., Teng, D., Engler, A.J., Chien, S., and Jin, S.: Stem cell fate dictated solely by altered nanotube dimension. Proc. Natl. Acad. Sci. 106, 21302135 (2009).10.1073/pnas.0813200106CrossRefGoogle ScholarPubMed
Duvvuru, M.K., Han, W., Chowdhury, P.R., Vahabzadeh, S., Sciammarella, F., and Elsawa, S.F.: Bone marrow stromal cells interaction with titanium; Effects of composition and surface modification. PloS One 14, e0216087 (2019).CrossRefGoogle ScholarPubMed
Liu, C., Zhang, Y., Wang, L., Zhang, X., Chen, Q., and Wu, B.: A strontium-modified titanium surface produced by a new method and its biocompatibility in vitro. PloS One 10, e0140669 (2015).10.1371/journal.pone.0140669CrossRefGoogle ScholarPubMed
Liang, Y., Xu, J., Chen, J., Qi, M., Xie, X., and Hu, M.: Zinc ion implantation-deposition technique improves the osteoblast biocompatibility of titanium surfaces. Mol. Med. Rep. 11, 42254231 (2015).CrossRefGoogle Scholar
Pokrowiecki, R., Zaręba, T., Szaraniec, B., Pałka, K., Mielczarek, A., Menaszek, E., and Tyski, S.: In vitro studies of nanosilver-doped titanium implants for oral and maxillofacial surgery. Int. J. Nanomed. 12, 42854297 (2017).CrossRefGoogle ScholarPubMed
Li, X., Huang, Q., Liu, L., Zhu, W., Elkhooly, T.A., Liu, Y., Feng, Q., Li, Q., Zhou, S., Liu, Y., and Wu, H.: Reduced inflammatory response by incorporating magnesium into porous TiO2 coating on titanium substrate. Colloids Surf., B 171, 276284 (2018).CrossRefGoogle ScholarPubMed
Liu, W., Golshan, N.H., Deng, X., Hickey, D.J., Zeimer, K., Li, H., and Webster, T.J.: Selenium nanoparticles incorporated into titania nanotubes inhibit bacterial growth and macrophage proliferation. Nanoscale 8, 1578315794 (2016).CrossRefGoogle ScholarPubMed
Vahabzadeh, S. and Bose, S.: Effects of iron on physical and mechanical properties, and osteoblast cell interaction in β-tricalcium phosphate. Ann. Biomed. Eng. 45, 819828 (2017).CrossRefGoogle ScholarPubMed
Du, S., Li, J., Du, C., Huang, Z., Chen, G., and Yan, W.: Overendocytosis of superparamagnetic iron oxide particles increases apoptosis and triggers autophagic cell death in human osteosarcoma cell under a spinning magnetic field. Oncotarget 8, 94109424 (2016).CrossRefGoogle Scholar
Torti, S.V. and Torti, F.M.: Iron and cancer: More ore to be mined. Nat. Rev. Cancer 13, 342355 (2013).CrossRefGoogle ScholarPubMed
Liu, S. and Wang, Q.J.: Determination of Young's modulus and Poisson's ratio for coatings. Surf. Coat. Technol. 201, 64706477 (2007).10.1016/j.surfcoat.2006.12.021CrossRefGoogle Scholar
Alves, S.A., Ribeiro, A.R., Gemini-Piperni, S., Silva, R.C., Saraiva, A.M., Leite, P.E., Perez, G., Oliveira, S.M., Araujo, J.R., Archanjo, B.S., Rodrigues, M.E., Henriques, M., Celis, J-P., Shokuhfar, T., Borojevic, R., Granjeiro, J.M., and Rocha, L.A.: TiO2 nanotubes enriched with calcium, phosphorous and zinc: Promising bio-selective functional surfaces for osseointegrated titanium implants. RSC Adv. 7, 4972049738 (2017).CrossRefGoogle Scholar
Gulati, K., Ramakrishnan, S., Aw, M.S., Atkins, G.J., Findlay, D.M., and Losic, D.: Biocompatible polymer coating of titania nanotube arrays for improved drug elution and osteoblast adhesion. Acta Biomater. 8, 449456 (2012).CrossRefGoogle ScholarPubMed
Damodaran, V.B., Bhatnagar, D., Leszczak, V., and Popat, K.C.: Titania nanostructures: A biomedical perspective. RSC Adv. 5, 3714937171 (2015).10.1039/C5RA04271BCrossRefGoogle Scholar
Tallarico, D.A., Gobbi, A.L., Paulin Filho, P.I., Maia da Costa, M.E.H., and Nascente, P.A.P.: Growth and surface characterization of TiNbZr thin films deposited by magnetron sputtering for biomedical applications. Mater. Sci. Eng., C 43, 4549 (2014).10.1016/j.msec.2014.07.013CrossRefGoogle ScholarPubMed
Lilja, M., Genvad, A., Astrand, M., Strømme, M., and Enqvist, H.: Influence of microstructure and chemical composition of sputter deposited TiO2 thin films on in vitro bioactivity. J. Mater. Sci. Mater. Med. 22, 27272734 (2011).CrossRefGoogle ScholarPubMed
Savale, P.A.: Physical vapor deposition (PVD) methods for synthesis of thin films: A comparative study. Arch. Appl. Sci. Res. 8, 18 (2016).Google Scholar
S Smith, B., Yoriya, S., Grissom, L., A Grimes, C., and Popat, K.: Hemocompatibility of titania nanotube arrays. J. Biomed. Mater. Res., Part A 95A, 350360 (2011).CrossRefGoogle Scholar
Indira, K., Mudali, U.K., and Rajendran, N.: In vitro biocompatibility and corrosion resistance of strontium incorporated TiO2 nanotube arrays for orthopaedic applications. J. Biomater. Appl. 29, 113129 (2014).CrossRefGoogle ScholarPubMed
Das, K., Bose, S., and Bandyopadhyay, A.: TiO2 nanotubes on Ti: Influence of nanoscale morphology on bone cell-materials interaction. J. Biomed. Mater. Res., Part A 90, 225237 (2009).CrossRefGoogle ScholarPubMed
Alves, S.A., Rossi, A.L., Ribeiro, A.R., Toptan, F., Pinto, A.M., Celis, J-P., Shokuhfar, T., and Rocha, L.A.: Tribo-electrochemical behavior of bio-functionalized TiO2 nanotubes in artificial saliva: Understanding of degradation mechanisms. Wear 384–385, 28 (2017).CrossRefGoogle Scholar
Hamlekhan, A., Butt, A., Patel, S., Royhman, D., Takoudis, C., Sukotjo, C., Yuan, J., Jursich, G., Mathew, M.T., Hendrickson, W., Virdi, A., and Shokuhfar, T.: Fabrication of anti-aging TiO2 nanotubes on biomedical Ti alloys. PloS One 9, e96213 (2014).10.1371/journal.pone.0096213CrossRefGoogle ScholarPubMed
Alves, S.A., Rossi, A.L., Ribeiro, A.R., Toptan, F., Pinto, A.M., Shokuhfar, T., Celis, J-P., and Rocha, L.A.: Improved tribocorrosion performance of bio-functionalized TiO2 nanotubes under two-cycle sliding actions in artificial saliva. J. Mech. Behav. Biomed. Mater. 80, 143154 (2018).CrossRefGoogle ScholarPubMed
Shokuhfar, T., Arumugam, G.K., Heiden, P.A., Yassar, R.S., and Friedrich, C.: Direct compressive measurements of individual titanium dioxide nanotubes. ACS Nano 3, 30983102 (2009).CrossRefGoogle ScholarPubMed
Crawford, G.A., Chawla, N., and Houston, J.E.: Nanomechanics of biocompatible TiO2 nanotubes by interfacial force microscopy (IFM). J. Mech. Behav. Biomed. Mater. 2, 580587 (2009).CrossRefGoogle Scholar
Xu, Y.N., Liu, M.N., Wang, M.C., Oloyede, A., Bell, J.M., and Yan, C.: Nanoindentation study of the mechanical behavior of TiO2 nanotube arrays. J. Appl. Phys. 118, 145301 (2015).CrossRefGoogle Scholar
Tang, H., Li, Y., Ma, J., Zhang, X., Li, B., Liu, S., Dai, F., and Zhang, X.: Improvement of biological and mechanical properties of titanium surface by anodic oxidation. Bio-Med. Mater. Eng. 27, 485494 (2016).CrossRefGoogle ScholarPubMed
Tsai, M-T., Chang, Y-Y., Huang, H-L., Wu, Y-H., and Shieh, T-M.: Micro-arc oxidation treatment enhanced the biological performance of human osteosarcoma cell line and human skin fibroblasts cultured on titanium–zirconium films. Surf. Coat. Technol. 303, 268276 (2016).CrossRefGoogle Scholar
Bandyopadhyay, A., Shivaram, A., Tarafder, S., Sahasrabudhe, H., Banerjee, D., and Bose, S.: In vivo response of laser processed porous titanium implants for load-bearing implants. Ann. Biomed. Eng. 45, 249260 (2017).10.1007/s10439-016-1673-8CrossRefGoogle ScholarPubMed
Yao, C., Slamovich, E.B., and Webster, T.J.: Enhanced osteoblast functions on anodized titanium with nanotube-like structures. J. Biomed. Mater. Res., Part A 85, 157166 (2008).10.1002/jbm.a.31551CrossRefGoogle ScholarPubMed
Shivaram, A., Bose, S., and Bandyopadhyay, A.: Mechanical degradation of TiO2 nanotubes with and without nanoparticulate silver coating. J. Mech. Behav. Biomed. Mater. 59, 508518 (2016).10.1016/j.jmbbm.2016.02.028CrossRefGoogle ScholarPubMed
Alves, S.A., Patel, S.B., Sukotjo, C., Mathew, M.T., Filho, P.N., Celis, J-P., Rocha, L.A., and Shokuhfar, T.: Synthesis of calcium-phosphorous doped TiO2 nanotubes by anodization and reverse polarization: A promising strategy for an efficient biofunctional implant surface. Appl. Surf. Sci. 399, 682701 (2017).CrossRefGoogle Scholar
Le Guéhennec, L., Soueidan, A., Layrolle, P., and Amouriq, Y.: Surface treatments of titanium dental implants for rapid osseointegration. Dent. Mater. 23, 844854 (2007).CrossRefGoogle ScholarPubMed
Vasilescu, C., Drob, P., Vasilescu, E., Demetrescu, I., Ionita, D., Prodana, M., and Drob, S.I.: Characterisation and corrosion resistance of the electrodeposited hydroxyapatite and bovine serum albumin/hydroxyapatite films on Ti–6Al–4V–1Zr alloy surface. Corros. Sci. 53, 992999 (2011).CrossRefGoogle Scholar
Truong, V.K., Lapovok, R., Estrin, Y.S., Rundell, S., Wang, J.Y., Fluke, C.J., Crawford, R.J., and Ivanova, E.P.: The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained titanium. Biomaterials 31, 36743683 (2010).CrossRefGoogle ScholarPubMed
Medeiros, D.M., Plattner, A., Jennings, D., and Stoecker, B.: Bone morphology, strength, and density are compromised in iron-deficient rats and exacerbated by calcium restriction. J. Nutr. 132, 31353141 (2002).CrossRefGoogle ScholarPubMed
Katsumata, S., Tsuboi, R., Uehara, M., and Suzuki, K.: Dietary iron deficiency decreases serum osteocalcin concentration and bone mineral density in rats. Biosci., Biotechnol., Biochem. 70, 25472550 (2006).10.1271/bbb.60221CrossRefGoogle ScholarPubMed
Bose, S., Banerjee, D., Robertson, S., and Vahabzadeh, S.: Enhanced in vivo bone and blood vessel formation by iron oxide and silica doped 3D printed tricalcium phosphate scaffolds. Ann. Biomed. Eng. 46, 12411253 (2018).CrossRefGoogle ScholarPubMed
Kazmierski, K.J., Ogilvie, G.K., Fettman, M.J., Lana, S.E., Walton, J.A., Hansen, R.A., Richardson, K.L., Hamar, D.W., Bedwell, C.L., Andrews, G., and Chavey, S.: Serum zinc, chromium, and iron concentrations in dogs with lymphoma and osteosarcoma. J. Vet. Intern. Med. 15, 585588 (2001).CrossRefGoogle ScholarPubMed
Yu, G-H., Fu, L., Chen, J., Wei, F., and Shi, W-X.: Decreased expression of ferritin light chain in osteosarcoma and its correlation with epithelial-mesenchymal transition. Eur. Rev. Med. Pharmacol. Sci. 22, 25802587 (2018).Google ScholarPubMed
Li, P., Zheng, X., Shou, K., Niu, Y., Jian, C., Zhao, Y., Yi, W., Hu, X., and Yu, A.: The iron chelator Dp44mT suppresses osteosarcoma's proliferation, invasion, and migration: In vitro and in vivo. Am. J. Transl. Res. 82, 53705385 (2016).Google Scholar