Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T22:32:54.387Z Has data issue: false hasContentIssue false

Surface Morphology Studies of Sub-Ps Pulsed-Laser-Deposited AlN Thin Films

Published online by Cambridge University Press:  03 March 2011

E. György
Affiliation:
Institute of Atomic Physics, Bucharest, 77125, Romania
V.S. Teodorescu
Affiliation:
Institute of Atomic Physics, Bucharest, 77125, Romania
I.N. Mihailescu
Affiliation:
Institute of Atomic Physics, Bucharest, 77125, Romania
A. Klini
Affiliation:
Foundation for Research and Technology—Hellas, Institute of Electronic Structure and Laser (FORTH-IESL), Vasilika Vouton, Heraklion, Crete, 711 10, Greece
V. Zorba
Affiliation:
Foundation for Research and Technology—Hellas, Institute of Electronic Structure and Laser (FORTH-IESL), Vasilika Vouton, Heraklion, Crete, 711 10, Greece
A. Manousaki
Affiliation:
Foundation for Research and Technology—Hellas, Institute of Electronic Structure and Laser (FORTH-IESL), Vasilika Vouton, Heraklion, Crete, 711 10, Greece
C. Fotakis
Affiliation:
Foundation for Research and Technology—Hellas, Institute of Electronic Structure and Laser (FORTH-IESL), Vasilika Vouton, Heraklion, Crete, 711 10 Greece; and University of Crete, Heraklion, Crete, Greece
Get access

Abstract

Aluminum nitride thin films were deposited by multipulse KrF* (λ = 248 nm, τ∼450 fs) excimer laser ablation of AlN targets in low-pressure nitrogen. We investigated the morphology of the deposited films by scanning as well as transmission electron microscopy, as a function of laser fluence and ambient nitrogen pressure. The AlN films entirely consist of grains (clusters) with average diameters of a few tens of nanometers. In addition, particulates several hundreds of nanometers in diameter (spherical droplets) were observed on the surfaces of the deposited films. Besides these particulates, we noticed the presence of micrometer-size whiskers, or dendritic- and wave-like structures, consisting of agglomerates of nanoparticles. The particulates density decreases with the decrease of the laser fluence, or with the increase of the ambient nitrogen pressure, while their average size increases. This indicates that clustering is the dominant particulates formation mechanism, as a result of the enhanced number of collisions in the fs laser generated ablation plasma.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Pulsed Laser Deposition of Thin Films, edited by Chrisey, D.G. and Hubler, G.K. (Wiley, New York, 1994).Google Scholar
2Von Allmen, M. and Blatter, A.Laser-Beam Interactions with Materials, 2nd ed. (Springer, Berlin, 1995).CrossRefGoogle Scholar
3Bauerle, D.Laser Processing and Chemistry (Springer-Verlag, Berlin, 1996).CrossRefGoogle Scholar
4Mihailescu, I.N. and György, E.Pulsed Laser Deposition: An Overview, Invited contribution to the 4th International Commission for Optics (ICO) Book “Trends in Optics and Photonics,” edited by Asakura, T. (ICO President) (Springer Series in Optical Science, p. 201, 1999).Google Scholar
5Murakami, K. in Laser Ablation of Electronic Materials - Basic Mechanisms and Applications, edited by Fogarassy, E. and Lazare, S. (Elsevier, Amsterdam, 1992), p. 125.Google Scholar
6Kelly, R. and Rothenberg, J., Nucl. Instrum. Methods B 7/8 755 (1985).CrossRefGoogle Scholar
7Mihailescu, I.N., Teodorescu, V.S., György, E., Ristoscu, C. and Cristescu, R., SPIE Proc. 4762 64 (2002).CrossRefGoogle Scholar
8Proyer, S., Stangl, E., Borz, M., Hellebrand, B. and Bauerle, D., Physica C 257 1 (1996).CrossRefGoogle Scholar
9Chichkov, B.N., Momma, C., Nolte, S., von Alvensleben, F. and Tunnermann, A., Appl. Phys. A: Solid Surf. 63 109 (1996).CrossRefGoogle Scholar
10Pronko, P.P., Cutta, S.K., Squier, J., Rudd, J.V., Du, D. and Mourou, G., Opt. Commun. 114 106 (1995).CrossRefGoogle Scholar
11 Laser Ablation and Desorption, edited by Miller, John C. (Academic Press, San Diego, 1998).Google Scholar
12Teodorescu, V.S., Mihailescu, I.N., György, E., Luches, A., Martino, M., Nistor, L.C., Van Landuyt, J. and Hermann, J., J. Med. Opt. 43 1773 (1996).CrossRefGoogle Scholar
13Mihailescu, I.N., Lita, A., Teodorescu, V.S., György, E., Alexandrescu, R., Luches, A., Martino, M. and Barborica, A., J. Vac. Sci. Technol. A 14 1986 (1996).CrossRefGoogle Scholar
14Chitica, N., György, E., Lita, A., Marin, G., Mihailescu, I.N., Pantelica, D., Petrascu, M., Hatziapostolou, A., Grivas, C., Broll, N., Cornet, A., Mirica, C. and Andrei, A., Thin Solid Films 301 71 (1997).CrossRefGoogle Scholar
15Mihailescu, I.N., Teodorescu, V.S., György, E., Luches, A., Perrone, A. and Martino, M., J. Phys. D: Appl. Phys. 31 2236 (1998).CrossRefGoogle Scholar
16Mihailescu, I.N., György, E., Teodorescu, V.S., Steinbrecher, Gy., Neamtu, J., Perrone, A. and Luches, A., J. Appl. Phys. 86 7123 (1999).CrossRefGoogle Scholar
17György, E., Mihailescu, I.N., Kompitsas, M. and Giannoudakos, A., Appl. Surf. Sci. 195 270 (2002).CrossRefGoogle Scholar
18György, E., Ristoscu, C., Mihailescu, I.N., Klini, A., Vainos, N., Fotakis, C., Ghica, C., Schmerber, G. and Faerber, J., J. Appl. Phys. 90 456 (2001).CrossRefGoogle Scholar
19Szatmari, S. and Schafer, F.P., Opt. Commun. 68 196 (1988).CrossRefGoogle Scholar
20Santagata, A., Marotta, V., Orlando, S., Teghil, R., Zaccagnino, M. and Giardini, A., Appl. Surf. Sci. (2003).Google Scholar
21Albert, O., Roger, S., Glinec, Y., Loulergue, J.C., Etchepare, J., Boulmer-Leborgne, C., Perriere, J. and Millon, E., Appl. Phys. A: Mater. Sci. Process. 76 319 (2003).CrossRefGoogle Scholar
22Lowndes, D.H., Rouleau, C.M., Thundat, T.G., Dusher, G., Kenik, E.A. and Pennycook, S.J., J. Mater. Res. 14 359 (1999).CrossRefGoogle Scholar
23Pedraza, A.J., Fowlkes, J.D., Blom, D.A. and Meyer, H.M., J. Mater. Res. 17 2815 (2002).CrossRefGoogle Scholar
24Borowiec, A., Mackenzie, M., Weatherly, G.C. and Haugen, H.K., Appl. Phys. A: Mater. Sci. Process. (2003).Google Scholar
25Bonse, J., Wrobel, J.M., Kruger, J. and Kautek, W., Appl. Phys. A: Mater. Sci. Process. 72 89 (2001).CrossRefGoogle Scholar
26György, E., Mihailescu, I.N., Kompitsas, M. and Giannoudakos, A. (2003, in press).Google Scholar
27Binh, V.T. and Melinon, P., Surf. Sci. 161 234 (1985).CrossRefGoogle Scholar
28Blakely, J.M. and Jackson, K.A., J. Chem. Phys. 37 428 (1962).CrossRefGoogle Scholar
29Ristoscu, C., Mihailescu, I.N., Velegrakis, M., Massaouti, M., Klini, A. and Fotakis, C., J. Appl. Phys. 93 2244 (2003).CrossRefGoogle Scholar
30Hirayama, Y., Yabe, H. and Obara, M., J. Appl. Phys. 89 2943 (2001).CrossRefGoogle Scholar