Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T19:26:37.603Z Has data issue: false hasContentIssue false

Surface characteristics of high-strength MgO–CaO–SiO2−P2O5 glass-ceramics

Published online by Cambridge University Press:  03 March 2011

Jiin-Jyh Shyu
Affiliation:
Department of Materials Engineering, Tatung Institute of Technology, Taipei, Taiwan, Republic of China
Jenn-Ming Wu
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
Get access

Abstract

Surface-related characteristics (growth of surface layer and crystal preferred orientation) and the resulting mechanical strength of apatite-containing glass-ceramics in the system MgO–CaO–SiO2−P2O5 were investigated. The variations of surface-layer thickness and crystal preferred orientation were explained by a criterion considering both the surface and bulk nucleation of apatite phase. Glass-ceramics with a fairly high strength of 250–410 MPa could be obtained by an appropriate two-step heat treatment. The high strength in the present study is closely related to the growth of the surface layer, which might result in surface compressive-stress.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Broemer, H., Deutscher, K., Blencke, B., Pfeil, E., and Strunz, V., Sci. Ceram. 9, 219 (1977).Google Scholar
2Vogel, W., Höland, W., Naumann, K., and Gummel, J., J. Non-Cryst.Solids 80, 34 (1986).CrossRefGoogle Scholar
3Nakamura, T., Yamamuro, T., Higashi, S., Kokubo, T., and Ito, S., J. Biomed. Mater. Res. 19, 685 (1985).CrossRefGoogle Scholar
4Kokubo, T., Ito, S., Shigematsu, M., Sakka, S., and Yamamuro, T., J. Mater. Sci. 20, 2001 (1985).CrossRefGoogle Scholar
5Kokubo, T., Ito, S., Sakka, S., and Yamamuro, T., J. Mater. Sci. 21, 536 (1986).CrossRefGoogle Scholar
6Kasuga, T., Nakajima, K., Uno, T., and Yoshida, M., in Handbook of Bioactive Ceramics, Vol. 1: Bioactive Glass-Ceramic Composite Toughened by Tetragonal Zirconia, edited by Yamamuro, T., Hench, L. L., and Wilson, J. (CRC Press, Boca Raton, FL, 1990), p. 137.Google Scholar
7Shyu, J. J. and Wu, J. M., J. Am. Ceram. Soc. 73 (4), 1062 (1990).CrossRefGoogle Scholar
8Shyu, J. J. and Wu, J. M., J. Am. Ceram. Soc. 74 (7), 1532 (1991).CrossRefGoogle Scholar
9Shyu, J. J. and Wu, J. M., J. Am. Ceram. Soc. 74 (9), 2123 (1991).CrossRefGoogle Scholar
10Shyu, J. J. and Wu, J. M., Mater. Lett. 11 (1,2), 15 (1991).CrossRefGoogle Scholar
11Utsami, Y. and Sakka, S., J. Am. Ceram. Soc. 53, 286 (1970).CrossRefGoogle Scholar
12Strnad, Z., Glass-Ceramic Materials (Elsevier, New York, 1986), p. 169.Google Scholar
13H. Brömer, Deutscher, K. K., Blenki, B., Pfeil, E., and Strunz, V., Sci. Ceram. 9, 219 (1977).Google Scholar
14Vogel, W., Holand, W., and Naumann, K., DD-patent No. 153 108 (1980).Google Scholar
15Kokubo, T., Ito, S., Shigematsu, M., Sakka, S., and Yamamuro, T., J. Mater. Sci. 20, 2001 (1985).CrossRefGoogle Scholar
16Wu, S. C. and Hon, M. H., in Proc. 1989 Ann. Conf. Chinese Soc. for Mater. Sci., p. 761.Google Scholar
17Rigby, G. R. and Green, A. T., Trans. Brit. Ceram. Soc. 41, 123 (1942).Google Scholar