Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-29T01:10:05.888Z Has data issue: false hasContentIssue false

Superior glass-forming ability of CuZr alloys from minor additions

Published online by Cambridge University Press:  01 July 2006

P. Yu
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Repubic of China
H.Y. Bai*
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Repubic of China
W.H. Wang
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Repubic of China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We report a novel phenomenon in which minor element additions (∼1 at.%) can dramatically enhance the glass-forming ability (GFA) of CuZr(Al) metallic alloy, which can be cast into glasses with large cross-section sizes using a conventional casting method. The minor additions cause the liquidus temperature Tl to decrease from 1219 (for Cu50Zr50) to 1139 K [for (Cu50Zr50)92Al7Gd1], and the reduced glass transition temperature Trg (=Tg/Tl) of the alloys increases from 0.550 (for Cu50Zr50) to 0.613 [for (Cu50Zr50)92Al7Gd1]. The mechanism involved in the achievement of the superior GFA is explained by the stronger tendency of short-range ordering in the stronger microalloyed alloys as well as the thermodynamic and kinetic aspects.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).Google Scholar
2.Wang, W.H., Dong, C., Shek, C.H.: Bulk metallic glasses. Mater. Sci. Eng. R. 44, 45 (2004).Google Scholar
3.Wang, W.H., Bian, Z., Wen, P., Zhang, Y.: Role of addition in formation and properties of Zr-based bulk metallic glasses. Intermetallics 10, 1249 (2002).Google Scholar
4.Xu, D.H., Duan, G., Johnson, W.L.: Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper. Phys. Rev. Lett. 92, 245504 (2004).CrossRefGoogle ScholarPubMed
5.Lu, Z.P., Liu, C.T., Thompson, J.R., Porter, W.D.: Structural amorphous steels. Phys. Rev. Lett. 92, 245503 (2004).Google Scholar
6.Greer, A.L.: Confusion by design. Nature 366, 303 (1993).Google Scholar
7.Ponnambalam, V., Poon, S.J., Shiflet, G.J.: Fe-based bulk metallic glasses with diameter thickness larger than one centimeter. J. Mater. Res. 19, 1320 (2004).CrossRefGoogle Scholar
8.Böhmer, R., Angell, C.A.: Correlations of the nonexponentiality and state dependence of mechanical relaxations with bond connectivity in Ge–As–Se supercooled liquids. Phys. Rev. B 45, 10091 (1992).CrossRefGoogle ScholarPubMed
9.Novikov, V.N., Sokolov, A.P.: Poisson's ratio and the fragility of glass-forming liquids. Nature 431, 961 (2004).Google Scholar
10.Bordat, P., Affouard, F., Descamps, M., Ngai, K.L.: Does the interaction potential determine both the fragility of a liquid and the vibrational properties of its glassy state? Phys. Rev. Lett. 93, 105502 (2004).CrossRefGoogle ScholarPubMed
11.Scopigno, T., Ruocco, G., Sette, F., Monaco, G.: Is the fragility of a liquid embedded in the properties of its glass? Science 302, 849 (2003).CrossRefGoogle ScholarPubMed
12.Buchenau, U., Wischnewski, A.: Fragility and compressibility at the glass transition. Phys. Rev. B 70, 092201 (2004).Google Scholar
13.Angell, C.A.: Formation of glasses from liquids and biopolymers. Science 267, 1924 (1995).Google Scholar
14.Tang, M.B., Wang, W.H.: Binary CuZr bulk metallic glasses. Chin. Phys. Lett. 21, 901 (2004).Google Scholar
15.Inoue, A., Zhang, W.: Formation, thermal stability and mechanical properties of Cu–Zr and Cu–Hf binary glassy alloy rods. Mater. Trans. 45, 584 (2004).CrossRefGoogle Scholar
16.Xu, D.H., Lohwongwatana, B., Duan, G., Johnson, W.L., Garland, C.: Bulk metallic glass formation in binary Cu-rich alloy series—Cu100−xZrx (x = 34, 36, 38.2, 40 at.%) and mechanical properties of bulk Cu64Zr36 glass. Acta Mater. 52, 2621 (2004).CrossRefGoogle Scholar
17.Lin, X.H., Johnson, W.L.: Formation of TiZrCuNi bulk metallic glasses. J. Appl. Phys. 78, 6514 (1995).Google Scholar
18.Turnbull, D.: Under what conditions can a glass be formed? Contemp. Phys. 10, 473 (1969).CrossRefGoogle Scholar
19.Bruning, R., Samwer, K.: Glass transition on long time scales. Phys. Rev. B 46, 11318 (1992).Google Scholar
20.Busch, R., Bakke, E., Johnson, W.L.: Viscosity of the supercooled liquid and relaxation at the glass transition of the Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk metallic glass forming alloy. Acta Mater. 46, 4725 (1998).Google Scholar
21.Shadowspeaker, L., Busch, R.: On the fragility of Nb–Ni-based and Zr-based bulk metallic glass. Appl. Phys. Lett. 85, 2508 (2004).Google Scholar
22.Borrego, J.M., Conde, A., Roth, S., Eckert, J.: Glass-forming ability and soft magnetic properties of FeCoSiAlGaPCB amorphous alloys. J. Appl. Phys. 92, 2073 (2002).Google Scholar
23.Zhao, Z.F., Zhao, D.Q., Wang, W.H.: A highly glass-forming alloy with low glass transition temperature. Appl. Phys. Lett. 82, 4699 (2003).CrossRefGoogle Scholar
24.Zhang, B., Wang, W.H.: Properties of Ce-based bulk metallic glass-forming alloys. Phys. Rev. B 70, 224208 (2004).Google Scholar
25.Perera, D.N.: Compilation of the fragility parameters for several glass-forming metallic alloys. J. Phys.: Condens. Matter 11, 3807 (1999).Google Scholar
26.Debenedetti, P.G., Stillinger, F.H.: Supercooled liquids and glass transition. Nature 410, 259 (2001).Google Scholar
27.Miracle, D.B.: A structural model for metallic glasses. Nat. Mater. 3, 697 (2004).Google Scholar
28.Li, J., Gu, X., Hufnagel, T.C.: Using fluctuation microscopy to characterize structural order in metallic glasses. Microsc. Microanal. 9, 509 (2003).Google Scholar
29.Tanaka, H.: Relation between thermodynamics and kinetics of glass-forming liquids. Phys. Rev. Lett. 90, 055701 (2003).Google Scholar
30.Adam, G., Gibbs, J.H.: On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43, 139 (1965).Google Scholar
31.Ahn, K., Louca, D., Poon, S.J., Shiflet, G.J.: Topological and chemical ordering induced by Ni and Nd in Al87Ni7Nd6 metallic glass. Phys. Rev. B 70, 224103 (2004).Google Scholar