Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T12:05:58.109Z Has data issue: false hasContentIssue false

Superhard transition metal tetranitrides: XN4 (X = Re, Os, W)

Published online by Cambridge University Press:  30 May 2012

Sezgin Aydin
Affiliation:
Department of Physics, Gazi University, Teknikokullar, 06500, Ankara, Turkey
Yasemin Oztekin Ciftci*
Affiliation:
Department of Physics, Gazi University, Teknikokullar, 06500, Ankara, Turkey
Aynur Tatar
Affiliation:
Department of Physics, Gazi University, Teknikokullar, 06500, Ankara, Turkey
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The structural, mechanical, and electronic properties of rhenium, osmium, and tungsten tetranitrides, XN4 (X = Re, Os, W) with the orthorhombic ReP4-type structure have been investigated by first-principles calculations using density functional plane-wave pseudopotential method. The calculated formation enthalpies and elastic constants show that these tetranitrides are energetically and mechanically stable. It is appeared from the calculated band structures and density of states that ReN4 and new proposed WN4 are metallic, while OsN4 is semiconductor with a band gap of 0.64 eV. The hardness values of all compounds obtained from different hardness methods indicate that these tetranitrides are superhard materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Solozhenko, V.L., Andrault, D., Fiquet, G., Mezouar, M., and Rubie, D.C.: Synthesis of superhard cubic BC2N. Appl. Phys. Lett. 78, 1385 (2001).CrossRefGoogle Scholar
2.Thornton, A.G. and Wilks, J.: Clean surface reactions between diamond and steel. Nature 274, 792 (1978).Google Scholar
3.Gilman, J.J., Cumberland, R.W., and Kaner, R.B.: Design of hard crystals. Int. J. Refract. Met. Hard Mater. 24, 1 (2006).CrossRefGoogle Scholar
4.Haines, J., Leger, J.M., and Bocqillon, G.: Synthesis and design of superhard materials. Annu. Rev. Mater. Res. 31, 1 (2001).Google Scholar
5.Kaner, R.B., Gilman, J.J., and Tolbert, S.H.: Designing superhard materials. Science 308, 1268 (2005).Google Scholar
6.Peng, F., Liu, Q., Fu, H., and Yang, X.: Electronic and thermodynamic properties of ReB2 under high pressure and temperature. Solid State Commun. 149, 56 (2009).CrossRefGoogle Scholar
7.Wu, Z., Hao, X., Liu, X., and Meng, J.: Structures and elastic properties of OsN2 investigated via first-principles density functional calculations. Phys. Rev. B: Condens. Matter 75, 054115 (2007).CrossRefGoogle Scholar
8.Sun, H., Jhi, S.H., Roundy, D., Cohen, M.L., and Louie, S.G.: Structural forms of cubic BC2N. Phys. Rev. B: Condens. Matter 64, 094108 (2001).CrossRefGoogle Scholar
9.Teter, D.M.: Computational alchemy: The search for new superhard materials. MRS Bull. 23, 22 (1998).Google Scholar
10.Teter, D.M. and Hemley, R.J.: Low-compressibility carbon nitrides. Science 271, 53 (1996).CrossRefGoogle Scholar
11.Li, Q., Wang, M., Oganov, A.R., Cui, T., Ma, Y.M., and Zou, G.T.: Rhombohedral superhard structure of BC2N. J. Appl. Phys. 105, 053514 (2009).CrossRefGoogle Scholar
12.Levine, J.B., Tolbert, S.H., and Kaner, R.B.: Advancements in the search for superhard ultra-incompressible metal borides. Adv. Funct. Mater. 19, 35193533 (2009).CrossRefGoogle Scholar
13.Levine, J.B., Nguyen, S.L., Rasool, H.I., Wright, J.A., Brown, S.E., and Kaner, R.B.: Preparation and properties of metallic, superhard rhenium diboride crystals. J. Am. Chem. Soc. 130, 16953 (2008).CrossRefGoogle ScholarPubMed
14.Zhao, W.J. and Wang, Y.X.: Elastic stability and electronic structure of low energy tetragonal and monoclinic PdN2 and PtN2. Chin. Phys. B 18, 3934 (2009).Google Scholar
15.Wang, Y.X., Arai, M., Sasaki, T., and Fan, C.Z.: Ab initio study of monoclinic iridium nitride as a high bulk modulus compound. Phys. Rev. B: Condens. Matter 75, 104110 (2007).CrossRefGoogle Scholar
16.Wu, Z.J., Zhao, E.J., Xiang, H.P., Hao, X.F., Liu, X.J., and Meng, J.: Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys. Rev. B: Condens. Matter 76, 054115 (2007).CrossRefGoogle Scholar
17.Young, A.F., Sanloup, C., Gregoryanz, E., Scandolo, S., Hemley, R.J., and Mao, H.K.: Synthesis of novel transition metal nitrides IrN2 and OsN2. Phys. Rev. Lett. 96, 155501 (2006).CrossRefGoogle ScholarPubMed
18.Yu, R., Zhan, Q., and Zhang, X.F.: Elastic stability and electronic structure of pyrite type PtN2: A hard semiconductor. Appl. Phys. Lett. 88, 051913 (2006).CrossRefGoogle Scholar
19.Gou, H.Y., Hou, L., Zhang, J.W., Sun, G.F., Gao, L.H., and Gao, F.M.: Theoretical hardness of PtN2 with pyrite structure. Appl. Phys. Lett. 89, 141910 (2006).CrossRefGoogle Scholar
20.Yu, R. and Zhang, X.F.: Family of noble metal nitrides: First principles calculations of the elastic stability. Phys. Rev. B: Condens. Matter 72, 054103 (2005).CrossRefGoogle Scholar
21.Hao, X.F., Xu, Y.H., Wu, Z.J., Zhou, D.F., Liu, X.J., Cao, X.Q., and Meng, J.: Low-compressibility and hard materials ReB2 and WB2: Prediction from first-principles study. Phys. Rev. B: Condens. Matter 74, 224112 (2006).CrossRefGoogle Scholar
22.Liang, Y.C. and Zhang, B.: Mechanical and electronic properties of superhard ReB2. Phys. Rev. B: Condens. Matter 76, 132101 (2007).CrossRefGoogle Scholar
23.Wang, Y.X.: Elastic and electronic properties of TcB2 and superhard ReB2: First-principles calculations. Appl. Phys. Lett. 91, 101904 (2007).CrossRefGoogle Scholar
24.Cumberland, R.W., Weinberger, M.B., Gilman, J.J., Clark, S.M., Tolbert, S.H., and Kaner, R.B.: Osmium diboride, an ultra-incompressible, hard material. J. Am. Chem. Soc. 127, 7264 (2005).CrossRefGoogle ScholarPubMed
25.Gou, H.Y., Hou, L., Zhang, J.W., and Gao, F.M.: Pressure-induced incompressibility of ReC and effect of metallic bonding on its hardness. Appl. Phys. Lett. 92, 241901 (2008).CrossRefGoogle Scholar
26.Wang, Y.X.: Ultra-incompressible and hard technetium carbide and rhenium carbide: First-principles prediction. Phys. Status Solidi RRL 2, 126 (2008).Google Scholar
27.Guo, X.J., Xu, B., He, J.L., Yu, D.L., Liu, Z.Y., and Tian, Y.J.: Structure and mechanical properties of osmium carbide: First-principles calculations. Appl. Phys. Lett. 93, 041904 (2008).CrossRefGoogle Scholar
28.Gu, Q.F., Krauss, G., and Steurer, W.: Transition metal borides: Superhard versus ultra-incompressible. Adv. Mater. 20, 3620 (2008).CrossRefGoogle Scholar
29.Zhang, M., Wang, M., Cui, T., Ma, Y.M., Niu, Y.L., and Zou, G.T.: Electronic structure, phase stability, and hardness of the osmium borides, carbides, nitrides, and oxides: First-principles calculations. J. Phys. Chem. Solids 69, 2096 (2008).Google Scholar
30.Wen-Jie, Z., Hong-Bin, X., and Yuang-Xu, W.: Prediction of a superhard material of ReN4 with a high shear modulus. Chin. Phys. B 19(1), 016201 (2010).CrossRefGoogle Scholar
31.Zhao, W.J., Xu, H.B., and Wang, Y.X.: A hard semiconductor OsN4 with high elastic constant c44. Phys. Status Solidi RRL 3, 272 (2009).CrossRefGoogle Scholar
32.Gregoryanz, E., Sanloup, C., Somayazulu, M., Badro, J., Fiquet, G., Mao, H.K., and Hemley, R.J.: Synthesis and characterization of a binary noble metal nitride. Nat. Mater. 3, 294 (2004).Google Scholar
33.Crowhurst, J.C., Goncharov, A.F., Sadigh, B., Evans, C.L., Morrall, P.G., Ferreira, J.L., and Nelson, A.J.: Synthesis and characterization of the nitrides of platinum and iridium. Science 311, 1275 (2006).CrossRefGoogle ScholarPubMed
34.Guillermet, A.F., Haglund, J., and Grimvall, G.: Cohesive properties and electronic structure of 5d-transition-metal carbides and nitrides in the NaCl structure. Phys. Rev. B: Condens. Matter 48, 11673 (1993).CrossRefGoogle ScholarPubMed
35.Crowhurst, J.C., Goncharov, A.F., Sadigh, B., Zaug, J.M., Aberg, D., Meng, Y., and Prakapenka, V.B.: Synthesis and characterization of nitrides of iridium and palladium. J. Mater. Res. 23, 1 (2008).CrossRefGoogle Scholar
36.Sahu, B.R. and Kleinman, L.: PtN: A zinc-blende metallic transition-metal compound. Phys. Rev. B: Condens. Matter 71, 041101 (2005).CrossRefGoogle Scholar
37.Uddin, J. and Scuseria, G.E.: Structures and electronic properties of platinum nitride by density functional theory. Phys. Rev. B: Condens. Matter 72, 035101 (2005).Google Scholar
38.Kanoun, M.B. and Goumri-Said, S.: Electronic properties of the binary noble metal nitride PtN: First-principles calculations. Phys. Rev. B: Condens. Matter 72, 113103 (2005).Google Scholar
39.Yu, R. and Zhang, X.F.: Platinum nitride with fluorite structure. Appl. Phys. Lett. 86, 121913 (2005).CrossRefGoogle Scholar
40.Hernandez, A.D., Montoya, J.A., Profeta, G., and Scandolo, S.: First-principles investigation of the electron-phonon interaction in OsN2: Theoretical prediction of superconductivity mediated by N-N covalent bonds. Phys. Rev. B: Condens. Matter 77, 092504 (2008).CrossRefGoogle Scholar
41.Zheng, J.C.: Superhard hexagonal transition metal and its carbide and nitride: Os, OsC, and OsN. Phys. Rev. B: Condens. Matter 72, 052105 (2005).CrossRefGoogle Scholar
42.Patil, S.K.R., Khare, S.V., Tuttle, B.R., Bording, J.K., and Kodambaka, S.: Mechanical stability of possible structures of PtN investigated using first-principles calculations. Phys. Rev. B: Condens. Matter 73, 104118 (2006).CrossRefGoogle Scholar
43.Young, A.F., Montoya, J.A., Sanloup, C., Lazzeri, M., Gregoryanz, E., and Scandolo, S.: Interstitial dinitrogen makes PtN2 an insulating hard solid. Phys. Rev. B: Condens. Matter 73, 153102 (2006).CrossRefGoogle Scholar
44.Fan, C.Z., Zeng, S.Y., Li, L.X., Zhan, Z.J., Liu, R.P., Wang, W.K., Zhang, P., and Yao, Y.G.: Potential superhard osmium dinitride with fluorite and pyrite structure: First-principles calculations. Phys. Rev. B: Condens. Matter 74, 125118 (2006).Google Scholar
45.Yu, R., Zhan, Q., and De Jonghe, C.: Crystal structures of and displacive transitions in OsN2, IrN2, RuN2, and RhN2. Angew. Chem. Int. Ed. 46, 1136 (2007).Google Scholar
46.Montoya, J.A., Hernandez, A.D., Sanloup, C., Gregoryanz, E., and Scandolo, S.: OsN2: Crystal structure and electronic properties. Appl. Phys. Lett. 90, 011909 (2007).CrossRefGoogle Scholar
47.Wang, Y.X., Arai, M., and Sasaki, T.: Marcasite osmium nitride with high bulk modulus: First-principles calculations. Appl. Phys. Lett. 90, 061922 (2007).CrossRefGoogle Scholar
48.Chen, Z.W., Guo, X.J., Liu, Z.Y., Mao, M.Z., Jing, Q., Li, G., Zhang, X.Y., Li, L.X., Wang, Q., Tian, Y.J., and Liu, R.P.: Crystal structure and physical properties of OsN2 and PtN2 in the marcasite phase. Phys. Rev. B: Condens. Matter 75, 054103 (2007).CrossRefGoogle Scholar
49.Aberg, D., Sadigh, B., Crowhurst, J., and Goncharov, F.: Thermodynamic ground states of platinum metal nitrides. Phys. Rev. Lett. 100, 095501 (2008).CrossRefGoogle ScholarPubMed
50.Gao, F., He, J., Wu, E., Liu, S., Yu, D., Li, D., Zhang, S., and Tian, Y.: Hardness of covalent crystals. Phys. Rev. Lett. 91, 015502 (2003).CrossRefGoogle ScholarPubMed
51.Simunek, A. and Vackar, J.: Hardness of covalent and ionic crystals: First-principle calculations. Phys. Rev. Lett. 96, 085501 (2006).CrossRefGoogle ScholarPubMed
52.Simunek, A.: How to estimate hardness of crystals on a pocket calculator. Phys. Rev. B: Condens. Matter 75, 172108 (2007).CrossRefGoogle Scholar
53.Li, K., Wang, X., Zhang, F., and Xue, D.: Electronegativity identification of novel superhard materials. Phys. Rev. Lett. 100, 235504 (2008).Google Scholar
54.Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.J., Refson, K., and Payne, M.C.: First principles methods using CASTEP. Z. Kristallogr. 220, 567570 (2005).Google Scholar
55.Fischer, T.H.: General methods for geometry and wavefunction optimization. J. Phys. Chem. 96, 9768 (1992).Google Scholar
56.Ceperley, D.M. and Alder, B.I.: Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566 (1980).Google Scholar
57.Perdew, J.P. and Zunger, A.: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B: Condens. Matter 23, 5048 (1981).CrossRefGoogle Scholar
58.Vanderbilt, D.: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B: Condens. Matter 41, 7892 (1990).CrossRefGoogle Scholar
59.Kresse, G. and Hafner, J.: Ab initio molecular dynamics for liquid metals. Phys. Rev. B: Condens. Matter 47, 558 (1993).CrossRefGoogle ScholarPubMed
60.Kresse, G. and Hafner, J.: Norm-conserving ultrasoft pseudopotentials first-row and transition elements. J. Phys. Condens. Matter 6, 8245 (1994).Google Scholar
61.Kresse, G. and Hafner, J.: Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B: Condens. Matter 49, 14251 (1994).Google Scholar
62.Kresse, G. and Furthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996).CrossRefGoogle Scholar
63.Kresse, G. and Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B: Condens. Matter 54, 11169 (1996).Google Scholar
64.Kresse, G. and Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B: Condens. Matter 59, 1758 (1999).CrossRefGoogle Scholar
65.Blochl, P.E.: Projector augmented-wave method. Phys. Rev. B: Condens. Matter 50, 17953 (1994).CrossRefGoogle ScholarPubMed
66.Gao, F.: Hardness of oxide materials. Phys. Rev. B: Condens. Matter 69, 094113 (2004).CrossRefGoogle Scholar
67.Guo, X., He, J., Liu, Z., Tian, Y., Sun, J., and Wang, H-T.: Bond ionicities and hardness of B13C2-like structured ByX crystals (X = C, N, O, P, As). Phys. Rev. B: Condens. Matter 73, 104115 (2006).CrossRefGoogle Scholar
68.Phillips, J.C.: Ionicity of the chemical bond in crystals. Rev. Mod. Phys. 42, 317 (1970).Google Scholar
69.Jeitschko, W. and Rühl, R.: Synthesis and crystal structure of diamagnetic ReP4, a polyphosphide with Re-Re pairs. Acta Crystallogr., Sect. B 35, 1953 (1979).Google Scholar
71.La Placa, S.J. and Hamilton, W.C.: Refinement of the crystal structure of α-N2. Acta Crystallogr., Sect. B 28, 984 (1972).CrossRefGoogle Scholar
72.Wu, S.Q., Hou, Z.F., and Zhu, Z.Z.: Ab initio study on the structural and elastic properties of MAlSi (M = Ca, Sr, and Ba). Solid State Commun. 143, 425 (2007).Google Scholar
73.Hill, R.: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Lond, Sect. A 65, 349 (1952).CrossRefGoogle Scholar
74.Yang, Y., Lu, H., Yu, C., and Chen, J.M.: First-principles calculations of mechanical properties of TiC and TiN. J. Alloys Compd. 485, 542 (2009).Google Scholar
75.Watt, J.P. and Peselnick, L.: Clarification of the Hashin‐Shtrikman bounds on the effective elastic moduli of polycrystals with hexagonal, trigonal, and tetragonal symmetries. J. Appl. Phys. 51, 1525 (1980).CrossRefGoogle Scholar
76.Ding, Y.C., Xiang, A.P., He, X.J., and Hu, X.F.: Structural, elastic constants, hardness, and optical properties of pyrite-type dinitrides (CN2, SiN2, GeN2). Physica B 406, 1357 (2011).Google Scholar
77.Guan, L., Liu, B., Jin, L., Guo, J., Zhao, Q., Wang, Y., and Fu, G.: Electronic structure and optical properties of LaNiO3: First-principles calculations. Solid State Commun. 150, 20112014 (2010).CrossRefGoogle Scholar
78.Haddadi, K., Bouhemadou, A., and Louail, L.: First-principles study of the structural, elastic and electronic properties of the anti-perovskites SnBSc3 and PbBSc3. J. Alloys Compd. 504, 296302 (2010).CrossRefGoogle Scholar
79.Li, Y., Gao, Y., Xiao, B., Min, T., Fan, Z., Ma, S., and Yi, D.: The electronic, mechanical properties and theoretical hardness of chromium carbides by first-principles calculations. J. Alloys Compd. 509, 52425249 (2011).CrossRefGoogle Scholar
Supplementary material: File

Aydin et al. supplementary material

Supplementary tables

Download Aydin et al. supplementary material(File)
File 98.3 KB