Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-10T21:06:25.428Z Has data issue: false hasContentIssue false

Supercritical CO2 extraction of porogen phase: An alternative route to nanoporous dielectrics

Published online by Cambridge University Press:  01 November 2004

J.A. Lubguban
Affiliation:
Department of Electrical and Computer Engineering, University of Missouri, Columbia, Missouri 65211
S. Gangopadhyay*
Affiliation:
Department of Electrical and Computer Engineering, University of Missouri, Columbia, Missouri 65211
B. Lahlouh
Affiliation:
Physics Department, Texas Tech University, Lubbock, Texas 79409
T. Rajagopalan
Affiliation:
Physics Department, Texas Tech University, Lubbock, Texas 79409
N. Biswas
Affiliation:
Physics Department, Texas Tech University, Lubbock, Texas 79409
J. Sun
Affiliation:
Chemical Engineering Department, Texas Tech University, Lubbock, Texas 79409
D.H. Huang
Affiliation:
Chemical Engineering Department, Texas Tech University, Lubbock, Texas 79409
S.L. Simon
Affiliation:
Chemical Engineering Department, Texas Tech University, Lubbock, Texas 79409
A. Mallikarjunan
Affiliation:
Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, New York 12180
H-C. Kim
Affiliation:
IBM Almaden Research Center, San Jose, California 95120
J. Hedstrom
Affiliation:
IBM Almaden Research Center, San Jose, California 95120
W. Volksen
Affiliation:
IBM Almaden Research Center, San Jose, California 95120
R.D. Miller
Affiliation:
IBM Almaden Research Center, San Jose, California 95120
M.F. Toney
Affiliation:
SSRL, Stanford Linear Accelerator Center, Menlo Park, California 94025
*
a)Address all correspondence to this author. e-mail:[email protected]
Get access

Abstract

We present a supercritical CO2 (SCCO2) process for the preparation of nanoporous organosilicate thin films for ultralow dielectric constant materials. The porous structure was generated by SCCO2 extraction of a sacrificial poly(propylene glycol) (PPG) from a nanohybrid film, where the nanoscopic domains of PPG porogen are entrapped within the crosslinked poly(methylsilsesquioxane) (PMSSQ) matrix. As a comparison, porous structures generated by both the usual thermal decomposition (at approximately 450 °C) and by a SCCO2 process for 25 and 55 wt% porogen loadings were evaluated. It is found that the SCCO2 process is effective in removing the porogen phase at relatively low temperatures (<200 °C) through diffusion of the supercritical fluid into the phase-separated nanohybrids and selective extraction of the porogen phase. Pore morphologies generated from the two methods are compared from representative three-dimensional (3D) images built from small-angle x-ray scattering (SAXS) data.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Lee, W. and Ho, P.: Low-dielectric constant materials. MRS Bull. 22, 10 1997 , pp. 1923CrossRefGoogle Scholar
3Golden, J.H., Hawker, C.J. and Ho, P.S.Designing porous low-k dielectrics. Semicond. Int. 24,79 (2001).Google Scholar
5Polarz, S. and Smarsly, B.: Nanoporous materials. J. Nanosci. Nanotech. 2, 581 (2002).CrossRefGoogle ScholarPubMed
6de Castro, M.D. Loque, Valcarcel, M. and Tena, M.T.: Analytical Supercritical Fluid Extraction (Springer-Verlag, Berlin Heidelberg, Germany, 1994), p. 67Google Scholar
7 Los Alamos Newsletter, Vol 2, No 3, Feb. 8, 2001, “SCORR scores big,” K. Roa. edited by Delucas, K., pp. 12.Google Scholar
8Biberger, M.A., Schilling, P., Frye, D. and Mills, E.: Semiconductor FabTech 12th ed., (Henley Publishing Ltd., London, U.K.), pp. 239243Google Scholar
9Ogawa, S., Nasuno, T., Egami, M., and Nakashima, A.: Formation of Mechanically Strong Low-k Film using Supercritical Fluid Dry Technology, in International Interconnect Technology Conference, June 3–5, 2002. (Omni Press, Madison, WI).Google Scholar
10Lubguban, J.A., Sun, J., Rajagopalan, T., Lahlouh, B., Simon, S.L. and Gangopadhyay, S.: Supercritical carbon dioxide extraction to produce low-k plasma enhanced chemical vapor deposited dielectric films. Appl. Phys. Lett. 81, 4407 (2002).Google Scholar
11Madras, G., Erkey, C. and Akgerman, A.: Supercritical extraction of organic contaminants from soil combined with adsorption onto activated carbon. Environ. Prog. 13, 45 (1994).CrossRefGoogle Scholar
12Madras, G., Thibaud, C., Erkey, C. and Akgerman, A.: Modeling of supercritical extraction of organics from solid matrices. AIChE J. 40, 777 (1994).CrossRefGoogle Scholar
13Barth, D., Chouchi, D., Porta, G.D., Reverchon, E. and Perrut, M.: Desorption of lemon peel oil by supercritical carbon-dioxide—Deterpenation and psoralens elimination. J. Supercrit. Fluids 7, 177 (1994).CrossRefGoogle Scholar
14Reverchon, E., Osseo, L.S. and Gorgoglione, D.: Supercritical CO2 extraction of basil oil—Characterization of products and process modeling. J. Supercrit. Fluids 7,185 (1994).CrossRefGoogle Scholar
15Sato, M., Goto, M. and Hirose, T.: Fractional extraction with supercritical carbon-dioxide for the removal of terpenes from citrus oil. Ind. Eng. Chem. Res. 34, 3941 (1995).Google Scholar
16Sato, M., Goto, M. and Hirose, T.: Supercritical fluid extraction on semibatch mode for the removal of terpene in citrus oil. Ind. Eng. Chem. Res. 35, 1906 (1996).Google Scholar
17Beckman, J.: Carbon dioxide extraction of biomolecules. Science 271, 613 (1996).Google Scholar
18Laintz, K.E., Yu, J.J. and Wai, C.M.: Separation of metal-ions with sodium bis(trifluoroethyl)dithiocarbamate chelation and supercritical fluid chromatography. Anal. Chem. 64, 311 (1992).Google Scholar
19Laintz, K.E., Wai, C.M., Yonker, C.R. and Smith, R.D.: Extraction of metal-ions from liquid and solid materials by supercritical carbon dioxide. Anal. Chem. 64, 2875 (1992).CrossRefGoogle Scholar
20Wang, S.F., Elshani, S. and Wai, C.M.: Selective extraction of mercury with ionizable crown-ethers in supercritical carbon-dioxide. Anal. Chem. 67, 919 (1995).CrossRefGoogle Scholar
21Murphy, J.M. and Erkey, C.: Thermodynamics of extraction of copper (II) from aqueous solutions by chelation in supercritical carbon dioxide. Environ. Sci. Technol. 31, 1674 (1997).Google Scholar
22Zacharia, R.E., Simon, S.L., Beckman, E.J. and Enick, R.M.: Improving the thermal stability of a polymer through liquid carbon dioxide extraction of a transition metal catalyst. Journal Polym. Degrad. Stability 63, 85 (1999).CrossRefGoogle Scholar
23Lahlouh, B., Rajagopalan, T., Lubguban, J.A., Biswas, N., Gangopadhyay, S., Sun, J., Huang, D., Simon, S.L., Kim, H.C., Volksen, W., and Miller, R.D.: Creating nanoporosity by selective extraction of porogens using supercritical carbon dioxide/co-solvent processes, in Materials, Technology and Reliability for Advanced Interconnects and Low-k Dielectrics—2003, edited by McKerrow, A.J., Leu, J., Kraft, O., and Kikkawa, T. (Mater. Res. Soc. Symp. Proc. 766, Warrendale, PA, 2003), p. 291.Google Scholar
24Rajagopalan, T., Lahlouh, B., Lubguban, J.A., Biswas, N., Gangopadhyay, S., Sun, J., Huang, D.H., Simon, S.L., Mallikarjunan, A., Kim, H-C., Volksen, W., Toney, M.F., Huang, E., Rice, P.M., Delenia, E. and Miller, R.D.: Supercritical carbon dioxide extraction of porogens for the preparation of ultralow dielectric constant films. Appl. Phys. Lett. 82, 4328 (2003).CrossRefGoogle Scholar
25Huang, E., Toney, M.F., Volksen, W., Mecerreyes, D., Brock, P., Kim, H-C., Hawker, C.J., Hedrick, J.L., Lee, V.Y., Magbitang, T., Miller, R.D. and Lurio, L.B.: Pore-size distributions in nanoporous methyl silsesquioxane films as determined by small angle x-ray scattering. Appl. Phys. Lett. 81, 2232 (2002).Google Scholar
26Baney, R.H., Itoh, M., Sakakibara, A. and Suzuki, T.: Silsesquioxanes. Chem. Rev. 95, 1409 (1995).Google Scholar
27Yang, G.Y., Briber, R.M., Huang, E., Rice, P.M., Volksen, W. and Miller, R.D.: Formation and characterization of nanoporous ultra-low dielectric materials using TEM and SANS Proceedings of the ACS. Polym. Mater. Sci. Eng. 85, 18 (2001).Google Scholar
28Miller, R.D., Hedrick, J.L., Yoon, D.Y., Cook, R.F. and Hummel, J.P.: Phase-separated inorganic-organic hybrids for microelectronic applications. MRS Bull. 22, 44 (1997).CrossRefGoogle Scholar
29Hedrick, J.L., Srinivasan, S., Cha, H-J., Yoon, D., Flores, V., Harbison, M., Di Pietro, R., Hinsberg, W., Deline, V., Brown, H.R., Sherwood, M., Paulson, E., Miller, R.D., Cook, R., Liniger, E., Simonyi, E., Klaus, D., Cohen, S. and Hummel, J.: Toughened inorganic-organic hybrid materials for microelectronic application in Low-Dielectric Constant Materials II, edited by Lagendijk, A., Treichel, H., Uram, K.J., and Jones, A.C. (Mater. Res. Soc. Symp. Proc., San Francisco, CA, 443 1997 pp. 4758Google Scholar
30Nguyen, C.V., Hawker, C.J., Hedrick, J.L., Jaffe, R.L., Miller, R.D., Remenar, J.F., Rhee, H-W., Toney, M.F., Trollsas, M., Volksen, W. and Yoon, D.Y.: Stucture-property relationships for nano-porous poly(methyl-silsesquioxane) films with low-dielectric constants prepared via organic/inorganic polymer hybrids. Electrochem. Soc. Proc. 99, 38 (1999).Google Scholar
31Kiene, M., Morgen, M., Zhao, J., Hu, C., Cho, T. and Ho, P. Characterization of low-dielectric constant materials, in Handbook of Silicon Semiconductor Metrology, edited by Diebold, A.C. (Marcel Dekker, New York, 2001), p. 265Google Scholar
32Berk, N.F.: Scattering properties of the leveled-wave model of random morphologies. Phys. Rev. A 44,5069 (1991).CrossRefGoogle ScholarPubMed
33Lubguban, J.A., Rajagopalan, T., Mehta, N., Lahlouh, B., Simon, S.L. and Gangopadhyay, S.: Low-k organosilicate films prepared by tetravinyltetramethylcyclotetrasiloxane. J. Appl. Phys. 92, 1033 (2002).Google Scholar
34Rau, C. and Kulisch, W.: Mechanisms of plasma polymerization of various silico-organic monomers. Thin Solid Films 249, 28 (1994).CrossRefGoogle Scholar
35Socrates, G.: Infrared Characteristics Group Frequencies (Wiley, New York, 1994), Chap. 18.Google Scholar
36Miller, R.D., Volksen, W., Lee, V., Magbitang, T., Sundberg, L., Kim, H.-C., Hawker, C.J., and Hendrick, J.L., International Sematech Ultra Low k Workshop, June 6–7, San Francisco, CA, 2002.Google Scholar
37Pedersen, J.S.: Determination of size distribution from small-angle scattering data for systems with effective hard-sphere interactions. J. Appl. Crsytallogr. 27, 595 (1994).CrossRefGoogle Scholar
38Hedstrom, J.A., Toney, M.F., Huang, E., Kim, H-C., Volksen, W., Magbitang, T. and Miller, R.D.: Pore morphologies in disordered nanoporous thin films. Langmuir 20, 1535 (2004).CrossRefGoogle ScholarPubMed
39Cahn, J.W.: Phase separation by spinodal decomposition in isotropic systems. J. Chem. Phys. 42, 93 (1965).Google Scholar
40Berk, N.F.: Scattering properties of a model bicontinuous structure with a well defined length scale. Phys. Rev. Lett. 58, 2718 (1987).CrossRefGoogle Scholar
41Jinnai, H., Nishikawa, Y., Chen, S-H., Koizumi, S. and Hashimoto, T.: Morphological characterization of bicontinuous structures in polymer blends and microemulsions by the inverse-clipping method in the context of the clipped-random-wave model. Phys. Rev. E 61, 6773 (2000).CrossRefGoogle ScholarPubMed
42Choy, D. and Chen, S-H.: Clipped random wave analysis of isometric lamellar microemulsions. Phys. Rev. E 61, 4148 (2000).CrossRefGoogle ScholarPubMed
43Teubner, M.: Level surfaces of gaussian random fields and microemulsions. Europhys. Lett. 14, 403 (1991).Google Scholar
44Choy, D. and Chen, S-H.: Clipped random wave analysis of anisometric lamellar microemulsions. Phys. Rev. E 63, 021401 (2001).Google Scholar
45Roberts, A.P.: Statistical reconstruction of three-dimensional porous media from two-dimensional images. Phys. Rev. E 56, 3203 (1997).CrossRefGoogle Scholar
46Chen, S-H. and Chang, S-L.: Simulation of bicontinuous microemulsions: Comparison of simulated real-space microstructures with scattering experiments. J. Appl. Crystallogr. 24, 721 (1991).CrossRefGoogle Scholar