Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T12:20:22.716Z Has data issue: false hasContentIssue false

Superconductive (Y1−xCax)Ba2Cu4O8 (x = 0.0 and 0.05) ceramics prepared by low and high oxygen partial pressure techniques

Published online by Cambridge University Press:  31 January 2011

Takahiro Wada
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center, 10–13 Shinonome 1-Chome, Koto-ku, Tokyo 135, Japan
Nobuo Suzuki
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center, 10–13 Shinonome 1-Chome, Koto-ku, Tokyo 135, Japan
Koji Yamaguchi
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center, 10–13 Shinonome 1-Chome, Koto-ku, Tokyo 135, Japan
Ataru Ichinose
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center, 10–13 Shinonome 1-Chome, Koto-ku, Tokyo 135, Japan
Yuji Yaegashi
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center, 10–13 Shinonome 1-Chome, Koto-ku, Tokyo 135, Japan
H. Yamauchi
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center, 10–13 Shinonome 1-Chome, Koto-ku, Tokyo 135, Japan
Naoki Koshizuka
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center, 10–13 Shinonome 1-Chome, Koto-ku, Tokyo 135, Japan
Shoji Tanaka
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center, 10–13 Shinonome 1-Chome, Koto-ku, Tokyo 135, Japan
Get access

Abstract

Both YBa2Cu4O8 and (Y0.95Ca0.05)Ba2Cu4O8 were successfully prepared by firing for 160 h at 850 °C and at oxygen partial pressure of 3 atm without using any catalysts. These samples were characterized in terms of the crystallographic structure and thermal and superconducting properties. The x-ray powder diffraction patterns and superconducting properties for these samples were little changed after post-annealing for 6 h at 1070 °C and at oxygen partial pressure of 400 atm. However, when heat-treated at 700 °C in air and then quenched into liquid nitrogen, samples without post-annealing showed broader superconducting transitions than those post-annealed. Actually, the sharpness of the superconducting transition for a post-annealed sample was little affected by quenching. These observations were in agreement with the results of both transmission electron microscopy and thermal analyses.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Karpinski, J., Kaldis, E., Jilek, E., Rusiecki, S., and Bucher, B., Nature 336, 660 (1988).CrossRefGoogle Scholar
2Wada, T., Suzuki, N., Ichinose, A., Yaegashi, Y., Yamauchi, H., and Tanaka, S., Appl. Phys. Lett. 57, 81 (1990).CrossRefGoogle Scholar
3Zandbergen, H. W., Gronsky, R., Wang, K., and Thomas, G., Nature 331, 596 (1988).CrossRefGoogle Scholar
4Marshall, A. F., Barton, R. W., Char, K., Kapitulnik, A., Oh, B., Hammond, R. H., and Laderman, S. S., Phys. Rev. B 37, 9353 (1988).CrossRefGoogle Scholar
5Char, K., Lee, Mark, Barton, R. W., Marshall, A. F., Bozovic, I., Hammond, R. H., Beasley, M. R., Geballe, T. H., Kapitulnik, A., and Laderman, S. S., Phys. Rev. B38, 834 (1988).CrossRefGoogle Scholar
6Morris, D. E., Nickel, J. H., Wei, J.Y.T., Asmar, N. G., Scott, J. S., Scheven, U. M., Hultgren, C. T., Markelz, A. G., Post, J. E., Heaney, P. J., Veblen, D. R., and Hazen, R. M., Phys. Rev. B39, 7347 (1989).CrossRefGoogle Scholar
7Cava, R. J., Krajewski, J. J., Peck, W. F. Jr, Batlogg, B., Rupp, L. W. Jr, Fleming, R. M., Lames, A. C. W. P., and Marsh, P., Nature 338, 328 (1989).CrossRefGoogle Scholar
8Kourtakis, K., Robbins, M., Gallagher, P. K., and Tiefel, T., J. Mater. Res. 4, 1289 (1989).CrossRefGoogle Scholar
9Balachandran, U., Biznek, M. E., Tomlins, G. W., Veal, B. W., and Poeppel, R. B., Physica C165, 335 (1990).CrossRefGoogle Scholar
10Pooke, D. M., Buckley, R. G., Presland, M. R., and Tallon, J. L., Phys. Rev. B41, 7220 (1990).Google Scholar
11Jin, S., O'Bryan, H. M., Gallagher, P. K., Tiefel, T. H., Cava, R. J., Fastnacht, R. A., and Kammlott, G. W., Physica C 165, 415 (1990).CrossRefGoogle Scholar
12Murakami, H., Yaegashi, S., Nishino, J., Shiobara, Y., and Tanaka, S., Jpn. J. Appl. Phys. 29, L445 (1990).CrossRefGoogle Scholar
13Miyatake, T., Goto, S., Koshizuka, N., and Tanaka, S., Nature 341, 41 (1989).CrossRefGoogle Scholar
14Buckley, R. G., Tallon, J. L., Pooke, D. M., and Presland, M. R., Physica C165, 391 (1990).CrossRefGoogle Scholar
15Fisher, P., Karpinski, J., Kaldis, E., Jilek, E., and Rusieki, S., Solid State Commun. 69, 531 (1989).CrossRefGoogle Scholar
16Hazen, R. M., Finger, L. W., and Morris, D. E., Appl. Phys. Lett. 54, 1057 (1989).CrossRefGoogle Scholar
17Wada, T., Suzuki, N., Maeda, A., Yabe, T., Uchinokura, K., Uchida, S., and Tanaka, S., Phys. Rev. B39, 9126 (1989).CrossRefGoogle Scholar
18Miyatake, T., Yamaguchi, K., Takata, T., Goto, S., Koshizuka, N., and Tanaka, S., Jpn. J. Appl. Phys. 29, L1079 (1990).CrossRefGoogle Scholar
19Ramesh, R., Hwang, D. M., Venkatesan, T., Ravi, T. S., Nazar, L., Inam, A., Wu, X. D., Dutta, B., Thomas, G., Marshall, A. F., and Geballe, T. H., Science 247, 57 (1990).CrossRefGoogle Scholar
20Miyatake, T., Yamaguchi, K., Wada, T., Suzuki, N., Willis, J. O., Yamauchi, H., Koshizuka, N., and Tanaka, S., submitted to J. Appl. Phys.Google Scholar