Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-17T08:47:00.987Z Has data issue: false hasContentIssue false

Superconducting YBa2Cu3O7−x fibers from the thermoplastic gel method

Published online by Cambridge University Press:  31 January 2011

Fusaoki Uchikawa
Affiliation:
Department of Materials Science and Engineering, University of California, Los Angeles, California 90024
John D. Mackenzie
Affiliation:
Department of Materials Science and Engineering, University of California, Los Angeles, California 90024
Get access

Abstract

The successful fabrication of ceramic superconducting YBa2Cu3O7−x fibers has been investigated. A new method was proposed for synthesis of the fibers through a solution route. The thermoplastic gels were synthesized using Y, Ba, Cu, ethoxides, and diethylenetriamine. The fibers were drawn from the reheated gels. The fibers were characterized by x-ray diffraction, SEM, and shrinkage ratio measurements. The fired and then annealed fiber is shown to have a superconducting transition temperature of 91 K (onset) and zero resistance temperature of 84 K. With regard to the fired fibers, it is found that the surface area increased and superconducting transition temperature decreased with increasing organic content in the initial gel. The usefulness of this method is shown and the structure of the synthesized gel is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Yamada, Y., Fukushima, N., Nakayama, S., Yoshino, H., and Murase, S.Jpn. J. Appl. Phys. 26, L865 (1987).CrossRefGoogle Scholar
2Kohno, O., Ikeno, Y., Sadakata, N., and Goto, K., Jpn. J. Appl. Phys. 27, L77 (1988).CrossRefGoogle Scholar
3Sakka, S., Kozuka, H., and Umeda, T., Seramikku Ronbunshi 96, 468 (1987).CrossRefGoogle Scholar
4Goto, T. and Horiba, I., Jpn. J. Appl. Phys. 26, L1970 (1987).CrossRefGoogle Scholar
5Uchikawa, F., Zheng, H., Chen, K. C., and Mackenzie, J. D., in High Temperature Superconductor II, edited by Capone, D.W. II , Butler, W. H., Batlogg, B., and Chu, C. W. (Materials Research Society, Reno, NV, 1988), p. 89.Google Scholar
6Sakka, S., Am. Ceram. Soc. Bull. 64, 1463 (1985).Google Scholar
7Kamiya, K., J. Mater. Sci. 21, 842 (1986).CrossRefGoogle Scholar
8Nakamoto, K., in Infrared and Raman Spectra of Inorganic and Coordi-nation Compounds (John Wiley & Sons, New York, 1978), p. 197.Google Scholar
9Roth, R. S., Davis, K.L., and Dennis, J.R., in Adv. Ceram. Mat. (American Ceramic Society, 1987), p. 303.Google Scholar
10Sakka, S., Kamiya, K., and Yoko, Y., in Inorganic and Organometallic Polymers (American Chemical Society, Washington, DC, 1988), p. 345.CrossRefGoogle Scholar
11Zheng, H., Chen, K. C., and Mackenzie, J. D., in Ref. 5, p. 93.Google Scholar
12Chu, C. and Dunn, B., J. Am. Ceram. Soc. 70, C375 (1987).CrossRefGoogle Scholar
13Hatano, T., Matsushita, A., Nakamura, K., Honda, K., Matsumotoand, T.Ogawa, K., Jpn. J. Appl. Phys. 26, L374 (1987).CrossRefGoogle Scholar
14Hatano, T., Matsushita, A., Nakamura, K., Sakka, Y., Matsumoto, T., and Ogawa, K., Jpn. J. Appl. Phys. 26, L721 (1987).CrossRefGoogle Scholar
15Ginley, G. S., Nigrey, P. J., Venturini, E. L., Morosin, B., and Kwak, J. F., J. Mater. Res. 2, 732 (1987).CrossRefGoogle Scholar
16Barbers, V. A. M., Jonge, W. J. M. de, Bosh, L. A., Steen, C. v. d., Groote, A. M. W. de, Verheyen, A. A., and Vennix, C. W. H. M., J. Mater. Res. 3, 197 (1988).Google Scholar
17Yoshizaki, R., Iwazumi, T., Sawada, H., Ikeda, H., and Matuura, E., Jpn. J. Appl. Phys. 26, L311 (1987).CrossRefGoogle Scholar
18Viegers, M. P. A., Leeuw, D. M. de, Mutsaers, C. A. H. A., Hal, H. A. M. van, Smoorenburg, H. C. A., Hengst, J. H. T., Vries, J. W. C. de, and Zalm, P. C., J. Mater. Res. 2, 743 (1987).CrossRefGoogle Scholar
19Barkatt, A., Hojaji, H., and Michael, K. A., in Ref. 9, p. 701.Google Scholar
20Nakada, I., Sato, S., Oda, Y., and Kohara, T., Jpn. J. Appl. Phys. 26, L697 (1987).CrossRefGoogle Scholar