Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-07-02T21:09:36.275Z Has data issue: false hasContentIssue false

Superconducting properties of mixtures of Y1Ba2Cu3O9−x and Y1.8Ba0.2Cu1O5−y

Published online by Cambridge University Press:  31 January 2011

X. W. Wang
Affiliation:
Institute on Superconductivity, State University of New York at Buffalo, Amherst, New York 14260
H. S. Kwok
Affiliation:
Institute on Superconductivity, State University of New York at Buffalo, Amherst, New York 14260
L. Shi
Affiliation:
Institute on Superconductivity, State University of New York at Buffalo, Amherst, New York 14260
J. P. Zheng
Affiliation:
Institute on Superconductivity, State University of New York at Buffalo, Amherst, New York 14260
P. Mattocks
Affiliation:
Institute on Superconductivity, State University of New York at Buffalo, Amherst, New York 14260
D. T. Shaw
Affiliation:
Institute on Superconductivity, State University of New York at Buffalo, Amherst, New York 14260
Get access

Abstract

The superconducting properties of heat-treated mixtures of Y1Ba2Cu3O9−x (A) and Y1.8Ba0.2Cu1O5−y (B) have been studied. As the concentration of B increases, the Meissner effect decreases, while the resistance jump near the superconducting transition increases. When the fraction of B approaches about 0.5, the superconducting transition disappears. Four different phases are identified in the mixture from the x-ray spectra, i.e., Y1Ba2Cu3O9−x, Y2Ba1Cu1O5–z, Y2Cu2O5, and Y2O3. The results agree well with the published phase diagram of this system.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Bednorz, J. G. and Miiller, K. A., Z. Phys. B 64, 189 (1986).CrossRefGoogle Scholar
2Wu, M. K., Ashburn, J. R., Torng, C. J., Hor, P. H., Meng, R. L., Gao, L., Huang, Z. J., Wang, Y. O., and Chu, C. W., Phys. Rev. Lett. 58, 908 (1987).CrossRefGoogle Scholar
3Grant, P. M., Beyers, R. B., Engler, E. M., Lim, G., Parkin, S. S. P., Ramirez, M. L., Lee, V. Y., Nazzal, A., Vazquez, J. E., and Savoy, R. J., Phys. Rev. B 35, 7242 (1987).CrossRefGoogle Scholar
4Tarascon, J. M., Greene, L. H., McKinnon, W. R., and Hull, G. W., Phys. Rev. B 35, 7115 (1987).CrossRefGoogle Scholar
5Cava, R. J., Batlogg, B., R. B. van Dover, Murphy, D. W., Sunshine, S., Siegrist, T., Remeika, J. R., Rietman, E. A., Zahurak, S., and Espinosa, G. P., Phys. Rev. Lett. 58, 1676 (1987).CrossRefGoogle Scholar
6Michel, C. and Raveau, B., J. Solid State Chem. 43, 73 (1982).CrossRefGoogle Scholar
7Chen, J. T., Wenger, L. E., McEwan, C. J., and Logothetis, E. M., Phys. Rev. Lett. 58, 1972 (1987).CrossRefGoogle Scholar
8Wu, M. K., in the Symposium on Superconductivity and Applications, Buffalo, New York, September 1987; D. E. Farrell, M. R. DeGuire, B. S. Chandrasekhar, S. A. Alterovitz, P. R. Aron, and R. L. Fagaly, Phys. Rev. B 35, 8797 (1987); Y. Khan, submitted to J. Mater. Sci. Lett.Google Scholar
9Ginley, D. S., Venturini, E. L., Kwak, J. F., Banghman, R. J., Morosin, B., and Schirber, J. E., Phys. Rev. B 36, 829 (1987); I. Felner, I. Nowik, and Y. Yeshurun, Phys. Rev. B 36, 3923 (1987); M. A. Dubson, S. T. Herbert, J. J. Calabrese, D. C. Harris, B. R. Patton, and J. C. Garland, Phys. Rev. Lett. 60, 1061 (1988).CrossRefGoogle Scholar
10Lambert, A., JCPDS Grant-in-Aid Report, Mineralogisch-Petrographisches Institut, Universitat Heidelberg, 1981.Google Scholar
11Clarke, D. R., Ad. Ceram. Mater. 2, 273 (1987).CrossRefGoogle Scholar
12Hinks, D. G., Soderholm, L., Capone, D. W. II , Jorgensen, J. D., Schuller, I. K., Segre, C. U., Zhang, K., and Grace, J. D., Appl. Phys. Lett. 50, 1688 (1987).CrossRefGoogle Scholar
13Abeles, B., Pinch, H. L., and Gittleman, J. I., Phys. Rev. B 35, (247) 1975.Google Scholar
14Matsushita, T., Ni, B., Sudo, Y., Iwakuma, M., Funaki, K., Takeo, M., and Yamafuji, K. (to be published).Google Scholar
15Ihara, H., Terada, N., Jo, M., Hirabayashi, M., Tokumoto, M., Kimura, Y., Matsubara, T., and Sugise, R., Jpn. J. Appl. Phys. 26, L1413 (1987).CrossRefGoogle Scholar
16Ovshinsky, S. R., Young, R. T., Allred, D. D., Maggio, G. De, and Leeden, G. A. Van der, Phys. Rev. Lett. 58, 2579 (1987).CrossRefGoogle Scholar
17Huang, C. Y., Dries, L. J., Hor, P. H., Meng, R. L., Chu, C. W., and Frankel, R. B., Nature 328, 403 (1987).CrossRefGoogle Scholar
18Erbil, A., in the Proceedings of the Materials Research Society, Boston, MA, December 1987; see, for example, Science 238, 1655 (1987).Google Scholar
19Fueki, K., Kitazawa, K., Kishio, K., and Hesegawa, T., in the Proceedings of the Electrochemical Society, Low-Temperature Electricity Symposium (to be published).Google Scholar
20Panda, C. S., Osofsky, M. S., Singh, A. K., Richards, L. E., Ashoka, R., Letourneau, V., and Wolf, S. A. (to be published).Google Scholar
21Chen, J. T. (private communication).Google Scholar