Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-09T22:32:26.321Z Has data issue: false hasContentIssue false

Substitutions in Hg-cuprate superconductors

Published online by Cambridge University Press:  03 March 2011

V. Kirtikar
Affiliation:
Morris Research Inc., 1918 University Avenue, Berkeley, California 94704
K.K. Singh
Affiliation:
Morris Research Inc., 1918 University Avenue, Berkeley, California 94704
D.E. Morris
Affiliation:
Morris Research Inc., 1918 University Avenue, Berkeley, California 94704
Get access

Abstract

Several substitutions have been attempted in the Hg layer of the Hg 1212 and 1223 cuprate superconductors. A new series of (Hg,Bi)1212 superconducting compounds has been synthesized. The highest Tc of the series (92 K) is found for the composition (Hg0.67Bi0.33)Sr2(Y0.5Ca0.5)Cu2O7−δ, with lattice constants a = 3.811 Å and c = 12.002 Å. X-ray diffraction and SEM with EDX analysis confirm that Hg is indeed incorporated in the structure. High-pressure oxygenation at 250 bar and 400 °C changes the magnetization curve, adding a second transition at ∼42 K; the 92 K transition remains unchanged. High-pressure oxygenation of Pb-substituted composition of the 1223 system, (Hg0.67Pb0.33)Ba2Ca2Cu3O8 also leads to the formation of low temperature phase with Tc = 67 K. The low Tc phase is associated with the incorporation of extra oxygen, possibly in the Hg layer.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Putilin, S. N., Antipov, E. V., Chmaissem, O., and Marezio, M., Nature 362, 226 (1993).CrossRefGoogle Scholar
2Putilin, S. N., Antipov, E. V., and Marezio, M., Physica C 212, 266 (1993).CrossRefGoogle Scholar
3Meng, R. L., Sun, Y. Y., Kulik, J., Huang, Z. J., Chen, F., Xue, Y. Y., and Chu, C. W., Physica C 214, 307 (1993).CrossRefGoogle Scholar
4Schilling, A., Cantoni, M., Guo, J. D., and Ott, H. R., Nature 363, 56 (1993).CrossRefGoogle Scholar
5Chu, C. W., Gao, L., Chen, F., Huang, Z. J., Meng, R. L., and Xue, Y. Y., Nature 365, 323 (1993).CrossRefGoogle Scholar
6Pelloquin, D., Michel, C., van Tendeloo, G., Maignan, A., Hervieu, M., and Raveau, B., Physica C 214, 87 (1993).CrossRefGoogle Scholar
7Liu, R. S., Hu, S. F., Jefferson, D. A., Edwards, P. P., and Hunneyball, P. D., Physica C 205, 206 (1993).CrossRefGoogle Scholar
8Iqbal, Z., Datta, T., Kirven, D., Lungu, A., Barry, J. C., Owens, F. J., Rinzler, A. G., Yang, D., and Reidinger, F., Phys. Rev. B 49, 12322 (1994).CrossRefGoogle Scholar
9Smith, G. S. and Snyder, R. L., J. Appl. Crystallogr. 12, 60 (1979), and references therein.Google Scholar
10Subramanian, M. A., Gopalakrishnan, J., Torardi, C. C., Gai, P. L., Boyes, E. D., Askew, T. R., Flippen, R. B., Franeth, W. E., and Sleight, A. W., Physica C 157, 124 (1989).CrossRefGoogle Scholar
11Ikeda, Y., Ito, H., Shimomura, S., Oue, Y., Inaba, K., Hiroi, Z., and Takano, M., Physica C 159, 93 (1989).CrossRefGoogle Scholar
12Tang, X. X., Morris, D. E., and Sinha, A.P.B., Phys. Rev. B 43, 7936 (1991).CrossRefGoogle Scholar
13Ehmann, A., Kemmler-Sack, S., Losch, S., Schlichenmaier, M., Zoller, P., Nissel, T., and Huebener, R. P., Physica C 198, 1 (1992).CrossRefGoogle Scholar
14Model HPS-5015P, Morris Research Inc., 1918 University Avenue, Berkeley, CA.Google Scholar