Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T02:42:14.617Z Has data issue: false hasContentIssue false

Subcritical Crack Growth in Single-crystal Silicon Using Micromachined Specimens

Published online by Cambridge University Press:  31 January 2011

A. M. Fitzgerald*
Affiliation:
Dept. of Aeronautics and Astronautics, Stanford University, Stanford, California 94305
R. S. Iyer
Affiliation:
Dept. of Materials Science and Engineering, Stanford University, Stanford, California 94305
R.H. Dauskardt
Affiliation:
Dept. of Materials Science and Engineering, Stanford University, Stanford, California 94305
T. W. Kenny
Affiliation:
Dept. of Mechanical Engineering, Stanford University, Stanford, California 94305
*
a)Address all correspondence to this author. Present address: Sensant Corporation, 14470 Doolittle Dr., San Leandro, CA 94577. e-mail: [email protected]
Get access

Abstract

A micromachined specimen with a test section only 150-μm thick was developed for investigating subcritical crack growth in silicon. Crack growth rates in the range 10−4–10−10 m/s were measured as a function of applied stress intensity (v–K curves) during tests in humid air and dry nitrogen lasting up to 24 h. The fracture toughness, KIc of {110} silicon was also measured at 1.15 ± 0.08 MPa m1/2. While some evidence MPa-m1/2 of subcritical crack growth appeared to occur in the region 0.9 KIc < K > 0.98 KIc, the extremely high crack growth exponent (n 100) and the high ratio of the apparent stress corrosion threshold, KIscc, to the fracture toughness, KIscc/KIc > 0.9, suggests that no clear evidence exists for a stress corrosion process in silicon exposed to humid air.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Muhlstein, C.L., Brown, S.B., and Ritchie, R.O., J. MEMS. 10, 593 (2001).Google Scholar
Muhlstein, C.L., Brown, S.B., and Ritchie, R.O., Sens. Actuators, A 94, 177 (2001).Google Scholar
Muhlstein, C.L., Stach, E.A., and Ritchie, R.O., Science (2001, submitted for publication).Google Scholar
Renuart, E.D., Fitzgerald, A.M., Kenny, T.W., and Dauskardt, R.H., J. Mater. Res. (2001, in review).Google Scholar
Dauskardt, R.H., Marshal, D.B., and Ritchie, R.O., J. Am. Ceram. Soc. 73, 893 (1990).Google Scholar
Ritchie, R.O. and Dauskardt, R.H., J. Ceram. Soc. Jpn. 99, 1047 (1991).CrossRefGoogle Scholar
Dill, S.J., Bennison, S.J., and Dauskardt, R.H., J. Am. Ceram. Soc. 80, 773 (1997).Google Scholar
Evans, A.G., Int. J. Fract. 16, 485 (1980).Google Scholar
Evans, A.G. and Fuller, E.R., Met. Trans. 5, 27 (1974).CrossRefGoogle Scholar
Lawn, B.R., Marshall, D.B., and Chantikul, P.J., J. Mater. Sci. 16, 1769 (1981).CrossRefGoogle Scholar
Wong, B. and Holbrook, R.J., J. Electrochem. Soc. 134, 2254 (1987).Google Scholar
Thouless, M.D. and Cook, R.F., Appl. Phys. Lett. 56, 1962 (1990).CrossRefGoogle Scholar
Bhaduri, S.B. and Wang, F.Y., Fract. Mech. Ceram. 2, 327 (1983).CrossRefGoogle Scholar
Connally, J.A. and Brown, S., Science 256, 1537 (1992).CrossRefGoogle Scholar
Wiederhorn, S.M., J. Am. Ceram. Soc. 50, 407 (1967).Google Scholar
Wiederhorn, S.M., Fuller, E.R. and Thomson, R., Met. Sci. 14, 450 (1980).Google Scholar
Card, J.C., Cannon, R.M., Dauskardt, R.H., and Ritchie, R.O., in Joining and Adhesion of Advanced Inorganic Materials, edited by Carim, A.H., Schartz, D.S., Silberglitt, R.S., and Loehman, R.E. (Mater. Res. Soc. Symp. Proc. 314, Pittsburgh, PA, 1993), pp. 109116.Google Scholar
Kook, S-Y. and Dauskardt, R.H., J. Appl. Phys. 91, 1293 (2002).CrossRefGoogle Scholar
Gonzalez, A.C. and Pantano, C.G., J. Am. Ceram. Soc. 73, 2534 (1990).Google Scholar
Fitzgerald, A.M., Dauskardt, R.H., and Kenny, T.W., Sens. Actuators, A 83, 194 (2000).CrossRefGoogle Scholar
Wiederhorn, S.M., Fract. Mech. Ceram. 2, 613 (1974).Google Scholar
Liaw, P.K., Hartmann, H.R., and Helm, E.J., Eng. Fract. Mech. 18, 121 (1983).Google Scholar
Dauskardt, R.H., Yu, W., and Ritchie, R.O., J. Am. Ceram. Soc. 70, C-248C-252 (1987).CrossRefGoogle Scholar
Bosch, R., GmbH U.S. Patent No. 4,855,017 (1994).Google Scholar
Lawn, B.R., Hockey, B.J., and Wiederhorn, S.M., J. Mater. Sci. 15, 1207 (1980).CrossRefGoogle Scholar
Hsia, K.J. and Argon, A.S., Mater. Sci. Eng. A 176, 111 (1994).Google Scholar
Judy, R.W. and Goode, R.J., in Stress Corrosion—New Approaches, edited by Craig, H.L., STP 610 (American Society for Testing and Materials, Philadelphia, PA, 1976), pp. 7281.Google Scholar
Dauskardt, R.H., Ritchie, R.O., Takemoto, J.K., and Brendzel, A.M., J. Biomech. Mater. Res. 28, 791 (1994).CrossRefGoogle Scholar
Lukes, F., Surf. Sci. 30, 91 (1972).CrossRefGoogle Scholar
Raider, S., Flitsch, R., and Palmer, M., J. Electrochem. Soc. 122, 413 (1975).CrossRefGoogle Scholar
Taft, E.A., J. Electrochem. Soc. 135, 1022 (1988).Google Scholar
Philipp, H., J. Appl. Phys. 43, 2835 (1972).CrossRefGoogle Scholar
Philipp, H. and Taft, E.A., J. Appl. Phys. 53, 5224 (1982).CrossRefGoogle Scholar
Morita, M., Ohmi, T., Hasegawa, E., Hawakami, M., and Ohwada, M., J. Appl. Phys. 68, 1272 (1990).Google Scholar
Kim, M.J. and Carpenter, R.W., J. Mater. Res. 5, 347 (1990).Google Scholar
Taylor, J.R., An Introduction to Error Analysis (University Science Books, Mill Valley, CA, 1982).Google Scholar
Chen, C.P. and Liepold, M.H., Am. Ceram. Soc. Bull. 59, 469 (1980).Google Scholar
Yasutake, K., Iwata, M., Yoshii, K., Umeno, M., and Kawabe, H., J. Mater. Sci. 21, 2185 (1986).CrossRefGoogle Scholar
Tsai, Y.L. and Mecholsky, J.J., J. Mater. Res. 6, 1248 (1991).Google Scholar
Wong, B. and Holbrook, R.J., J. Electrochem. Soc. 134, 2254 (1987).Google Scholar
C. St. John, Philos. Mag. 32, 1193 (1975).Google Scholar
Myers, R.J. and Hillberry, B.M., Fourth Int. Conf. Fract. 3B, 1001 (1977).Google Scholar
Chen, C.P. and Liepold, M.H., NASA Tech. Brief 10 (1986).Google Scholar