Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T22:49:43.617Z Has data issue: false hasContentIssue false

A study on the residual stress measurement methods on chemical vapor deposition diamond films

Published online by Cambridge University Press:  31 January 2011

Jung Geun Kim
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, P.O. Box 305–701, Kusung-Dong 373–1, Taejon, Korea
Jin Yu
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, P.O. Box 305–701, Kusung-Dong 373–1, Taejon, Korea
Get access

Abstract

Diamond films were deposited on the p-type Si substrate with the hot filament chemical vapor deposition (HFCVD). Residual stresses in the films were measured in air by the laser curvature, the x-ray diffraction (XRD) dϕψ − sin2ψ, and the Raman peak shift methods. All of the measuring methods showed similar behaviors of residual stress that changed from a compressive to a tensile stress with increasing the film thickness. However, values of residual stresses obtained through the Raman and XRD methods were 3–4 times higher than those of the curvature method. These discrepancies involved the setting of materials constants of CVD diamond film, and determination of a peak shifting on the XRD and Raman method. In order to elucidate the disparity, we measured a Young's moduli of diamond films by using the sonic resonance method. In doing so, the Raman and XRD peak shift were calibrated by bending diamond/Si beams with diamond films by a known amount, with stress levels known a priori from the beam theory, and by monitoring the peak shifts simultaneously. Results of each measuring method showed well coincidental behaviors of residual stresses which have the stress range from −0.5 GPa to +0.7 GPa, and an intrinsic stress was caused about +0.7 GPa with tensile stress.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ravi, K. V., Mater. Sci. Eng. B19, 203227 (1993).CrossRefGoogle Scholar
2.Seleznev, B. V., Blyablin, A. A., Gavrilov, A. V., Popov, A. M., Kandidov, A. V., and Rakhimov, A. T., Diamond Relat. Mater. 4, 13601362 (1995).CrossRefGoogle Scholar
3.Fan, W. D., Chen, X., Jagnnadham, K., and Narayan, J., J. Mater. Res. 9, 28502867 (1994).CrossRefGoogle Scholar
4.Gamlen, C. A., Case, E. D., Reinhard, D. K., and Huang, B., Appl. Phys Lett. 59 (20), 25292531 (1991).CrossRefGoogle Scholar
5.Zhu, W., McCune, R. C., DeVries, J. E., and Tamor, M. A., Diamond Relat. Mater. 4, 220233 (1995).CrossRefGoogle Scholar
6.Weiser, P. S. and Prawer, S., Diamond Relat. Mater. 4, 710713 (1995).CrossRefGoogle Scholar
7.Guo, H. and Alam, M., Thin Solid Films 212, 173179 (1992).CrossRefGoogle Scholar
8.Stoney, G. C., Proc. R. Soc. London A32, 172 (1909).Google Scholar
9.Windischmann, H. and Epps, G. F., J. Appl. Phys. 69 (4), 22312237 (1991).CrossRefGoogle Scholar
10.Wanlu, W., Kejun, L., Jinying, G., and Aimin, L., Thin Solid Films 215, 174178 (1992).CrossRefGoogle Scholar
11.Chen, K. H., Lai, Y. L., Lin, J. C., Song, K. J., Chen, C., and Huang, C. Y., Diamond Relat. Mater. 4, 460463 (1995).CrossRefGoogle Scholar
12.Berry, B. S., Pritchet, W. C., Cuomo, J. J., and Guarnieri, C. R., Appl. Phys. Lett. 57 (3), 302303 (1990).CrossRefGoogle Scholar
13.Slack, G. A and Bartram, S. F., J. Appl. Phys. 46 (1), 8998 (1975).CrossRefGoogle Scholar
14.Jiang, N., Hatta, A., Ito, T., Zhang, Z., Sasaki, T., and Hiraki, A., J. Mater. Res. 11, 17831786 (1996).CrossRefGoogle Scholar
15.Jiang, N., Sun, B. W., Zhang, Z., and Lin, Z., J. Mater. Res. 9, 26952702 (1994).CrossRefGoogle Scholar
16.Wurzinger, P., Pongratz, P., Gerber, J., and Ehrhardt, H., Diamond Relat. Mater. 5 345349 (1996).CrossRefGoogle Scholar
17.Chang, L., Chen, C. J., Chen, F. R., Hu, S. F., and Lin, T. S., Diamond Relat. Mater. 5, 326331 (1996).CrossRefGoogle Scholar
18.Legrice, Y. M., Nemanich, R. J., Glass, J. T., Lee, Y. H., Rudder, R. A., and Markunas, R. J., in Diamond, Silicon Carbide and Related Wide Bandgap Semiconductors, edited by Glass, J. T., Messier, R. F., and Fujimori, N. (Mater. Res. Soc. Symp. Proc. 162, Pittsburgh, PA, 1990), pp. 219224.Google Scholar
19.Anthony, T. R., Diamond Relat. Mater. 4, 13461352 (1995).CrossRefGoogle Scholar
20.Dannefaer, S., Zhu, W., Bretagnon, T., and Kerr, D., Phys. Rev. B 53 (4), 19791984 (1996).CrossRefGoogle Scholar
21.Yang, W. S and Je, J. H., J. Mater. Res. 11, 17871794 (1996).CrossRefGoogle Scholar
22.Brenner, A. and Senderoff, S., J. Res. Natl. Bur. Stand. 42, 105123 (1949).CrossRefGoogle Scholar
23.Schreber, E., Anderson, O. L., and Soga, N., Elastic Constants and Their Measurements (McGraw-Hill, Inc., New York, 1974), Chap. 4, p. 82.Google Scholar
24.Spinner, S. and Tefft, W. E., Am. Soc. Test Mater. Proc. 61, 1221 (1961).Google Scholar
25.Noyan, I. C and Cohen, J. B., Residual Stress Measurement by Diffraction and Interpretation (Springer-Verlag, New York, 1987), Chap. 5, p. 117.Google Scholar
26.IIIAger, J. W and Drory, M. D., Phys. Rev. B 48 (4), 26012607 (1993).CrossRefGoogle Scholar
27.Timoshenko, S. P and Krieger, S. W., Theory of Plates and Shells, 2nd ed. (McGraw-Hill, Inc., New York, 1959), Chap. 4, p. 79.Google Scholar
28.Case, E. D. and Kim, Y., J. Mater. Sci. 28, 18851900 (1993).CrossRefGoogle Scholar
29.Phani, K. K., J. Mat. Sci. Lett. 15 (7), 747750 (1986).CrossRefGoogle Scholar
30.Rankin, J., Boekenhauer, R. E., Csencsits, R., Shigesato, Y., Jacobson, M. W., and Sheldon, B. W., J. Mater. Res. 9, 21642173 (1994).CrossRefGoogle Scholar
31.Chu, C. J., Hauge, R. H., Margrave, J. L., and D'Evelyn, M. P., Appl. Phys. Lett. 61 (12), 13931395 (1992).CrossRefGoogle Scholar
32.Dieter, G. E., Mechanical Metallurgy, 2nd ed. (McGraw-Hill Inc., New York, Springer, 1976), Chap. 6, p. 198.Google Scholar
33.Jungnickel, G., Latham, C. D., Heggie, M. I., and Frauenheim, T., Diamond Relat. Mater. 5, 102107 (1996).CrossRefGoogle Scholar
34.Windischmann, H., Collins, R. W., and Cavese, J. M., J. Non-Cryst. Solid 85, 261272 (1986).CrossRefGoogle Scholar
35.Bernholc, J., Antonelli, A., and Sole, T. M. Del, Phys. Rev. Lett. 61 (23), 26892692 (1988).CrossRefGoogle Scholar
36.Namba, Y. and Heidarpour, E., J. Appl. Phys. 72 (5), 17481751 (1992).CrossRefGoogle Scholar
37.Flinn, P. A and Waychunas, G. A., J. Vac. Sci. Technol. B 6 (6), 17491755 (1988).CrossRefGoogle Scholar
38.Herchen, H., Cappelli, M. A., Landstrass, M. I., Plano, M. A., and Moyer, M. D., Thin Solid Films 212, 206215 (1992).CrossRefGoogle Scholar
39.Smith, D. K and Barrett, C. S., Advances in X-Ray Analysis 22, 111 (1979).CrossRefGoogle Scholar
40.Schwarzbach, D., Haubner, R., and Lux, B., Diamond Relat. Mater. 3, 757764 (1994).CrossRefGoogle Scholar
41.Schäafer, L., Jiang, X., and Klages, C. P., Applications of Diamond Films and Related Materials, edited by Tzeng, Y., Yoshikawa, M., Murakawa, M., and Feldman, A. (Elsevier Sci. Pub., New York, 1991), pp. 121128.Google Scholar