Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T15:49:11.170Z Has data issue: false hasContentIssue false

Study on the nature of the electrochemically synthesized hard Fe–15.4 mass% Ni–0.70 mass% C alloy film

Published online by Cambridge University Press:  06 January 2012

A. S. M. A. Haseeb
Affiliation:
Department of Materials and Metallurgical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1000, Bangladesh
Y. Hayashi
Affiliation:
Department of Materials Science and Engineering, Kyushu University, 6–10–1 Hakozaki, Higashi-ku, Fukuoka 812–8581, Japan
M. Masuda
Affiliation:
Department of Materials Science and Engineering, Kyushu University, 6–10–1 Hakozaki, Higashi-ku, Fukuoka 812–8581, Japan
M. Arita
Affiliation:
Department of Materials Science and Engineering, Kyushu University, 6–10–1 Hakozaki, Higashi-ku, Fukuoka 812–8581, Japan
Get access

Abstract

Electrochemical synthesis of hard Fe–15.4 mass% Ni–0.70 mass% C alloy film with a hardness 750 HV was carried out from sulfate-based bath containing a small amount of citric acid and L-ascorbic acid. The nature of the alloy was investigated by different characterization techniques including x-ray diffraction, x-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, Mössbauer spectroscopy, differential scanning calorimetry, and magnetic measurements. The decomposition behavior of the alloy was also studied and compared with that of thermally prepared martensite. It was found that the electrochemically deposited Fe–Ni–C alloy exists in a state that is ahead of the freshly quenched state of martensite. It is suggested that the state of the electrochemically deposited Fe–15.4 mass% Ni–0.70 mass% C alloy corresponds to the state of thermal martensite, which had been heated to the preprecipitation stage of tempering.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Izaki, M. and Omi, T., Metall. Mater. Trans. A 27A, 483 (1996).Google Scholar
Izaki, M., Enomoto, H., Nakae, A., Terada, S., Yamauchi, E., and Omi, T., J. Surf. Finish. Soc. Jpn. 45, 1303 (1994).Google Scholar
Izaki, M., Enomoto, H., and Omi, T., J. Jpn. Inst. Met. 56, 636 (1992).Google Scholar
Haseeb, A.S.M.A. and Huq, M.Z., Met. Finish. 95, 30 (1997).Google Scholar
Yasmin, A., Kamal, S., and Haseeb, A.S.M.A., Trans. Met. Finish. Assoc. India 5, 255 (1996).Google Scholar
Wonterghem, J. van, Morup, S., Koch, C.J.W., Charles, S.W., and Wells, S., Nature 322, 622 (1986).Google Scholar
Wonterghem, J. van and Morup, S., J. Phys. Chem. 92, 1013 (1988).Google Scholar
Morisako, A., Matsumoto, M., and Naoe, M., J. Appl. Phys. 69, 5619 (1991).Google Scholar
Yoshia, O. and Kitaori, N., Denki Kagaku 66, 1014 (1998).Google Scholar
Zieren, V., Jongh, M. De, Groenou, A. Broese Van, Zon, J.B.A.D. Van, Lasinski, P., and Theunissen, G.S.A.M., IEEE Trans. Magn. 30, 340 (1994).Google Scholar
Haseeb, A.S.M.A., Hayashi, Y., Masuda, M., and Arita, M., Metall. Mater. Trans. 33B, 921 (2002).Google Scholar
Chastain, J., Handbook of X-Ray Photoelectron Spectroscopy (Perkin-Elmer, Eden Prairie, MN, 1992).Google Scholar
Leith, S.D., Ramli, S., and Schwartz, D.T., J. Electrochem. Soc. 146, 1431 (1999).Google Scholar
Grimmett, D.L., Schwartz, M., and Nobe, K., J. Electrochem. Soc. 140, 973 (1993).Google Scholar
Gielen, P.M. and Kaplow, R., Acta Metall. 15, 49 (1967).Google Scholar
Greenwood, N.N. and Gibb, T.C., Mo¨ssbauer Spectroscopy (Chapman and Hall, London, U.K., 1971), pp. 314315 and the references therein.Google Scholar
Jartych, E., Zurawicz, J.K., Oleszak, D., and Pekala, M., J. Mag. Mag. Mater. 208, 221 (2000).Google Scholar
J-M.R. Genin, Metall. Trans. A 18A, 1371 (1987).Google Scholar
Genin, J.M. and Flinn, P.A., Phys. Lett. 22, 392 (1966).Google Scholar
Ron, M., Kindron, A., Schechter, H., and Niedzwiedz, S., J. Appl. Phys. 38, 590 (1967).Google Scholar
Moriya, T., Ino, H., and Fujita, F.E., J. Phys. Soc. Jpn. 24, 60 (1968).Google Scholar
Ino, H., Moriya, T., Fujita, F.E., Maeda, Y., Ono, Y., and Inokuti, Y., J. Phys. Soc. Jpn. 25, 88 (1968).Google Scholar
Ino, H., Ito, T., Nasu, S., and Gonser, U., Acta Metall. 30, 9 (1982).Google Scholar
Dabrowski, L., Suwalski, J., Sidzhimov, B., and Christov, V., Acta Metall. Mater. 42, 2375 (1994).Google Scholar
Nagakura, S., Hirotsu, Y., Kusunoki, M., Suzuki, T., and Nakamura, Y., Metall. Trans. A 14A, 1025 (1983).Google Scholar
Taylor, K.A., Olsen, G.B., Cohen, M., and Vander Sande, J.B., Metall. Trans. A 20A, 2749 (1989).Google Scholar
Uwakweh, O.N.C., Genin, J-M.R., and Silvain, J-F., Metall. Trans. 22A, 797 (1991).Google Scholar
Sherman, A.M., Eldis, G.T., and Cohen, M., Metall. Trans. 14A, 995 (1983).Google Scholar
Jack, K.H., J. Iron Steel Inst. 169, 26 (1951).Google Scholar
Mittemeijer, E.J., Gent, A. van, and Schaaf, P.J. van der, Metall. Trans. A 17A, 1441 (1986).Google Scholar
Mittemeijer, E.J., Cheng, L., Schaaf, P.J. van der, Brakman, C.M., and Korevaar, B.M., Metall. Trans. A 19A, 925 (1988).Google Scholar
Tomita, Y., Mater. Sci. Technol. 4, 977 (1988).Google Scholar
Read, H.G., Scr. Mater. 37, 151 (1997).Google Scholar
McCurrie, R.A., Ferromagnetic Materials: Structure and Properties (Academic Press, London, U.K., 1994).Google Scholar
Liang, H.Y., Chikazawa, M., and Watanabe, T., J. Jpn. Inst. Met. 63, 474 (1999).Google Scholar
Watanabe, T., Hirose, T., Arai, K., and Chikazawa, M., J. Jpn. Inst. Met. 63, 496 (1999).Google Scholar
Graef, G., Anderson, K., Groza, J., and Palazoglu, A., Mater. Sci. Eng., B 41, 253 (1996).Google Scholar
Watanabe, T. and Kanayama, T., J. Jpn. Inst. Met. 58, 138 (1994).Google Scholar