Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T22:24:06.945Z Has data issue: false hasContentIssue false

Study on preparation, growth mechanism, and optoelectronic properties of highly oriented WSe2 thin films

Published online by Cambridge University Press:  31 January 2011

T. Tsirlina
Affiliation:
Department of Materials and Interfaces, Weizmann Institute, Rehovot 76100, Israel
V. Lyakhovitskaya
Affiliation:
Department of Materials and Interfaces, Weizmann Institute, Rehovot 76100, Israel
S. Fiechter
Affiliation:
Abteilung Solare Energetik, Hahn-Meitner Institut, 14109 Berlin, Germany
R. Tenne
Affiliation:
Department of Materials and Interfaces, Weizman Institute, Rehovot 76100, Israel
Get access

Abstract

Recently, highly oriented WSe2 thin films, with the c axis of the crystallites perpendicular to the substrate, were reproducibly obtained by interposing a Ni/Cr thin layer between the substrate and a WO3 precursor film. In the present work the preparation conditions were varied to elucidate the growth mechanism of such films. A model for the growth mode is proposed. Based upon this analysis, WSe2 thin films with improved crystalline and electronic properties were obtained. The photoresponse spectrum for photoelectrochemical cells with the WSe2 electrode immersed into a selenosulfate solution was measured. Quantum efficiency of 0.1% was calculated from this spectrum.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hilton, M.R. and Fleischauer, P.D., Surf. Coat. Technol. 54/ 55, 453 (1992).Google Scholar
2.Spalvins, T., Thin Solid Films 96, 17 (1986).CrossRefGoogle Scholar
3.Delmon, B., Catal. Lett. 22, 1 (1993).CrossRefGoogle Scholar
4.Tributch, H., J. Electrochem. Soc. 125, 1086 (1978).CrossRefGoogle Scholar
5.Tenne, R. and Wold, A., Appl. Phys. Lett. 47, 707 (1985).CrossRefGoogle Scholar
6.Agarwal, M.K. and Rao, V.V., J. Cryst. Res. Technol. 24, 1215 (1989).CrossRefGoogle Scholar
7.Salitra, G., Hodes, G., Klein, E., and Tenne, R., Thin Solid Films 245, 180 (1994).CrossRefGoogle Scholar
8.Galun, E., Cohen, H., Margulis, L., Vilan, A., Tsirlina, T., Hodes, G., Tenne, R., Hershfinkel, M., Jaegermann, W., and Elmer, K., Appl. Phys. Lett. 67, 3474 (1995).CrossRefGoogle Scholar
9.Tenne, R., Galun, E., Ennaoui, A., Fiechter, S., Elmer, K., Kunst, M., Kozlow, Ch., Pettekofer, Ch., and Tiefenbacher, S., Thin Solid Films 272, 38 (1996).CrossRefGoogle Scholar
10.Tsirlina, T., Cohen, S., Cohen, H., Sapir, L., Peisach, M., Tenne, R., Matthaeus, A., Tiefenbacher, S., Jaegermann, W., Ponomarev, E.A., and Lévy-Clément, C., Solar Energy Mater. Solar Cells 44, 457 (1996).CrossRefGoogle Scholar
11.Ennaoui, A., Diesner, K., Fiechter, S., Moser, J.H., and Levy, F., Thin Solid Films 261, 124 (1995).CrossRefGoogle Scholar
12.Ennaoui, A., Fiechter, S., Ellmer, K., Scheer, R., and Diesner, K., Thin Solid Films 311, 146 (1997).CrossRefGoogle Scholar
13.Ballif, C., Regula, M., Schmid, P.E., Remskar, M., Sanjinés, R., and Lévy, F., Appl. Phys. A 62, 543 (1996).Google Scholar
14.Regula, M., Ballif, C., Remskar, M., and Lévy, F., J. Vac. Sci. Technol. A 15, 2323 (1997).CrossRefGoogle Scholar
15.Tonti, D., Varsano, F., Decker, F., Regula, M., Ballif, C., and Remskar, M., J. Phys. Chem. B 101, 2485 (1997).CrossRefGoogle Scholar
16.Ponomarev, E.A., Tenne, R., Katty, A., and Lévy-Clément, C., Solar Energy Mater. Solar Cells 52, 125 (1998).CrossRefGoogle Scholar
17.Lignier, O., Couturier, G., Tedd, J., Gonbeau, D., and Salardenne, J., Thin Solid Films 299, 45 (1997).CrossRefGoogle Scholar
18.Ouerfelli, J., Bernede, J.C., and Khelil, A., Appl. Surf. Sci. 120, 1 (1997).CrossRefGoogle Scholar
19.Guettari, N., Ouerfelli, J., Bernede, J.C., Khelil, A., Pouzet, J., and Conan, A., Mater. Chem. Phys. 52, 83 (1998).CrossRefGoogle Scholar
20.Gourmelon, E., Pouzet, J., Bernede, J.C., Hadouda, H., Khelil, A., and Le Ny, R., Mater. Chem. Phys. 58, 280 (1999).CrossRefGoogle Scholar
21.Binary Alloy Phase Diagrams, 2nd ed., edited by T.B. Massalski (ASM International, Materials Park, OH, 1990).Google Scholar
22.Regula, M., Ballif, C., and Lévy, F., J. Cryst. Growth 193, 109 (1998).CrossRefGoogle Scholar
23.Matthäus, A., Ennaoui, A., Fiechter, S., Tiefenbacher, S., Kiesewetter, T., Diesner, K., Sieber, I., Jaegermann, W., Tsirlina, T., and Tenne, R., J. Electrochem. Soc. 144, 1013 (1997).CrossRefGoogle Scholar
24.Tsirlina, T., Ph.D. Theis, Weizmann Institute of Science, Rehovot, Israel (May 2000).Google Scholar
25.Geyer, U., von Hülsen, U., and Thiyagarajan, P., Appl. Phys. Lett. 70, 1691 (1997);CrossRefGoogle Scholar
26.Czigány, Zs. and Radnóczi, G., Thin Solid Films 347, 133 (1999).CrossRefGoogle Scholar
Feldman, Y., Frey, G.L., Homyonfer, M., Lyakhovitskaya, V., Margulis, L., Cohen, H., Hodes, G., Hutchison, J.L., and Tenne, R., J. Am. Chem. Soc. 118, 5362 (1996).CrossRefGoogle Scholar
27.Wagner, R.S. and Ellis, W.S., Appl. Phys. Lett. 4, 89 (1964).CrossRefGoogle Scholar
28.Givargizov, E.I., The Growth of Whiskers and Platelets from Vapor (Nauka, Moscow, 1977) pp. 149151 (in Russian).Google Scholar
29.Chernov, A.A., Modern Crystallography III, Crystal Growth (Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1984), pp. 343352.CrossRefGoogle Scholar
30.Koma, A., Thin Solid Films 216, 72 (1992).CrossRefGoogle Scholar
31.Galun, E., Cohen, H., Margulis, L., Vilan, A., Tsirlina, T., Hodes, G., Tenne, R., Hershfinkel, M., Jaegermann, W., and Ellmer, K., Appl. Phys. Lett. 67, 3474 (1995).CrossRefGoogle Scholar