Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-09T22:37:20.680Z Has data issue: false hasContentIssue false

A study of the pressure-temperature conditions for diamond growth

Published online by Cambridge University Press:  03 March 2011

Yafei Zhang
Affiliation:
Department of Physics, Lanzhou University, Lanzhou 730000, People's Republic of China
Fangqing Zhang
Affiliation:
Department of Physics, Lanzhou University, Lanzhou 730000, People's Republic of China
Guanghua Chen
Affiliation:
Department of Physics, Lanzhou University, Lanzhou 730000, People's Republic of China
Get access

Abstract

An attempt to unify the growth mechanisms and conditions for diamond formation is developed via the growth probability calculated by a barrier model between the two phases. From the distribution law of the equal growth probability lines plotted in a pressure-temperature (P-T) diagram, five regions of different growth methods and mechanisms were reasonably delineated. Many experimental results can be generalized and explained by our theory, and the unity of diamond growth mechanism was discussed over the wide region of the P-T condition.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Bundy, F. P., Hall, H. T., Strong, H. M., and Wentorf, R. H. Jr., Nature 176, 51 (1955).CrossRefGoogle Scholar
2Rossini, F. D. and Jessup, R. S., J. Res. Nat. Bur. of Standards 21, 491 (1938).CrossRefGoogle Scholar
3Berman, R. and Simon, F., Z. Electrochem. 59, 333 (1955).Google Scholar
4Guo, Yongcun, Li, Zhihua, and Zhang, Guangyun, The Synthesis and Application of Diamond (Science Press, 1984), p. 124 (in Chinese).Google Scholar
5Patel, A. R. and Cherian, K. A., J. Cryst. Growth 46, 706 (1979).CrossRefGoogle Scholar
6Cerian, Kuruvilla A., Application of Diamond Films and Related Materials, Materials Science Monographs (Elsevier Science Publishers, B.V., 1991), Vol. 73, p. 389.Google Scholar
7Lonsdale, K., Milledge, H. J., and Nave, E., Min. Mag. 32, 185 (1959).Google Scholar
8Milledge, H. J., Science Progress 51, 540 (1963).Google Scholar
9Cannon, P., J. Am. Chem. Soc. 84, 4253 (1962).CrossRefGoogle Scholar
10Giardini, A. A. and Tyings, J. E., Am. Miner. 47, 1393 (1962).Google Scholar
11Strong, H. M., J. Chem. Phys. 39, 2057 (1963).Google Scholar
12Wentorf, R. H. Jr., Advances in Chem. Phys. 46, 3437 (1967).Google Scholar
13Fedoseev, D. V., Uspenskaja, K. S., Varnin, V. P., and Vnukov, S. P., Izvestiya Akad. Nauk SSSR, Seriya Khim 6, 1252 (1978).Google Scholar
14Tsuda, M., Nakajima, M., and Oikama, S., J. Am. Chem. Soc. 108, 5780 (1986).Google Scholar
15Frenklach, M. and Spear, K. E., J. Mater. Res. 3, 133 (1988).CrossRefGoogle Scholar
16Zhang, Guangyun and Li, Zhihua, Physics (in Chinese), 3, 4 (1974).Google Scholar
17Bundy, F. P., Physica A 156, 169 (1989).Google Scholar
18Zhang, K. C. and Zhang, H. L., Crystal Growth (Science Press, 1981), p. 580 (in Chinese).Google Scholar
19Bundy, F. P. and Kasper, J. S., J. Chem. Phys. 46, 3437 (1967).Google Scholar
20Alder, B. J. and Jamieson, J. C., Science 133, 367 (1961).Google Scholar
21Bundy, F. P., J. Chem. Phys. 38, 631 (1963).Google Scholar
22Zhang, Yafei, Surface Free Energy Dominated Diamond Growth, Chinese Phys. Lett. (1994, in press).Google Scholar
23Liou, Y., Inspektor, A., Weimer, R., Knight, D., and Messier, R., J. Mater. Res. 5, 2305 (1990).Google Scholar
24Spitsyn, B. V., Applications of Diamond Films and Related Materials (Elsevier Science Publishers, B.V., 1991), p. 475.Google Scholar
25Zhu, W., Messier, R., and Badzian, A. R., Proc. 1st Int. Symp. on Diamond and Diamond-Like Films, edited by Dismukes, J. P., 61 (1989).Google Scholar
26Eyring, H. and Cagle, F. W., Z. Electrochem. 56, 480 (1952).Google Scholar