Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-26T17:03:35.635Z Has data issue: false hasContentIssue false

Study of the overtones and combination bands in the Raman spectra of polyparaphenylene-based carbons

Published online by Cambridge University Press:  31 January 2011

A. Marucci
Affiliation:
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
M. A. Pimenta
Affiliation:
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
S. D. M. Brown
Affiliation:
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
M. J. Matthews
Affiliation:
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
M. S. Dresselhaus
Affiliation:
Department of Electrical Engineering and Computer Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
M. Endo
Affiliation:
Faculty of Engineering, Shinshu University, 500 Wakasato, Nagano 380–0092, Japan
Get access

Abstract

A detailed study of the second-order Raman spectrum of the polymer polyparaphenylene (PPP) prepared according to the Kovacic method and heat treated at temperatures THT between 650 and 750 °C is presented. The Raman experiments have been performed with five different laser excitation energies in the visible range between 1.92 and 3.05 eV. Several Raman bands in the region between 2400 and 3400 cm−1 have been detected and assigned to the overtones and combination bands of the two conformations of the PPP polymer (benzenoid and quinoid) that co-exist in our samples. Due to the carbonization process, these bands broaden and decrease in intensity with increasing heat treatment temperature, as is also observed for the corresponding first-order Raman features. The complete absence of these high-frequency Raman bands for PPP with heat treatment temperatures in excess of 750 °C indicates complete transformation of the polymer into a disordered carbon material.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Maurice, F., Froyer, G., Minier, M., and Gauneau, M., J. Phys. (Paris) Lett. 42, 425 (1981).CrossRefGoogle Scholar
2.Ivory, D.M., Miller, G.G., Sowa, J.M., Shacklette, L.W., Chance, R.R., and Baughman, R.H., J. Chem. Phys. 71, 1506 (1979).CrossRefGoogle Scholar
3.Endo, M., Nishimura, Y., Takahashi, T., Takeuchi, K., and Dresselhaus, M.S., J. Phys. Chem. Solids 57, 725 (1996).Google Scholar
4.Megahed, S. and Scrosati, B., J. Power Sources 51, 79 (1994).CrossRefGoogle Scholar
5.Dahn, J.R., Sleigh, A.K., Shi, H., Way, B.M., Weydanz, W.J., Reimers, J.N., Zhong, Q., and U. von Sacken, in Lithium Batteries. New Materials, Developments and Perspectives, edited by Pistoia, G. (Elsevier Science B.V., Amsterdam, 1994), pp. 149.Google Scholar
6.Matthews, M.J., Ph.D. Thesis, Massachusetts Institute of Technology (1998).Google Scholar
7.Dahn, J.R., Zheng, T., Liu, Y., and Xue, J.S., Science 270, 590 (1995).CrossRefGoogle Scholar
8.Kovacic, P. and Kyriakis, A., J. Am. Chem. Soc. 85, 454 (1963).CrossRefGoogle Scholar
9.Sato, K., Noguchi, M., Demachi, A., Oki, N., and Endo, M., Science 264, 556 (1994).CrossRefGoogle Scholar
10.Marucci, A., Brown, S.D.M, Pimenta, M.A., Matthews, M.J., Dresselhaus, M.S., Nishimura, K., and Endo, M., J. Mater. Res. 14, 1124 (1999).CrossRefGoogle Scholar
11.Froyer, G., Maurice, F., Bernier, P., and McAndrew, P., Polymer 23, 1103 (1982).CrossRefGoogle Scholar
12.Froyer, G., Goblot, J.Y., Guilbert, J.L., Maurice, F., and Pelous, Y., J. Phys. (Paris) Colloq. 44, C3745 (1983).CrossRefGoogle Scholar
13.Shacklette, L.W., Eckhardt, H., Chance, R.R., Miller, G.G., Ivory, D.M., and Baughman, R.H., J. Chem. Phys. 73, 353 (1980).CrossRefGoogle Scholar
14.Bredas, J.L., Themans, B., Fripiat, J.G., Andre, J.M., and Chance, R.R., Phys. Rev. B 29, 6761 (1984).CrossRefGoogle Scholar
15.Zannoni, G. and Zerbi, G., J. Chem. Phys. 82, 31 (1985).Google Scholar
16.Krichene, S., Buisson, J.P., and Lefrant, S., Synth. Met. 17, 589 (1987).Google Scholar
17.Knight, D.S. and White, W.B., J. Mater. Res. 4, 385 (1989).CrossRefGoogle Scholar
18.Kawashima, Y. and Katagiri, G., Phys. Rev. B 52, 10053 (1995).CrossRefGoogle Scholar
19.Vidano, R.P., Fischbach, D.B., Willis, L.J., and Loehr, T.M., Solid State Comm. 39, 341 (1981).CrossRefGoogle Scholar
20.Pimenta, M.A. et al. (1999, unpublished).Google Scholar
21.Dresselhaus, M.S., Dresselhaus, G., Pimenta, M.A., and Eklund, P.C., in Analytical Applications of Raman Spectroscopy (Blackwell Science, Oxford, UK, 1999), pp. 367434.Google Scholar
22.Matthews, M.J., Pimenta, M.A., Dresselhaus, G., Dresselhaus, M.S., and Endo, M., Phys. Rev. B 59, R6585 (1999).CrossRefGoogle Scholar
23.Bozovic, I. and Rakovic, D., Phys. Rev. B 32, 4235 (1985).CrossRefGoogle Scholar
24.Soto, J., Hernandez, V., and Lopez Navarrete, J. T., Synth. Met. 51, 229 (1992).CrossRefGoogle Scholar