Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-24T13:04:37.388Z Has data issue: false hasContentIssue false

A study of the dislocations in Si-doped GaAs comparing diluted Sirtl light etching, electron-beam-induced current, and micro-Raman techniques

Published online by Cambridge University Press:  31 January 2011

P. Martín
Affiliation:
Física de la Materia Condensada, ETS Ingenieros Industriales, 47011 Valladolid, Spain
J. Jiménez*
Affiliation:
Física de la Materia Condensada, ETS Ingenieros Industriales, 47011 Valladolid, Spain
C. Frigeri
Affiliation:
CNR-MASPEC Institute, Via Chiavari 18/A, 43100 Parma, Italy
L. F. Sanz
Affiliation:
Física de la Materia Condensada, ETS Ingenieros Industriales, 47011 Valladolid, Spain
J. L. Weyher
Affiliation:
High Pressure Research Center, Polish Academy of Sciences, U. Sokolowska 29/37, 01-142 Warszawa, Poland
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Impurity atmospheres around dislocations have been studied in n-type Si-doped liquid encapsulated Czochralski (LEC) GaAs substrates by micro-Raman spectroscopy, diluted Sirtl-like etching with light (DSL) method, and electron-beam-induced current (EBIC). A complete morphological study of the recombinative atmospheres revealed by photoetching was achieved by phase stepping microscopy (PSM), which is an optical interferometry technique allowing to obtain the surface topography with a high vertical resolution (in the nanometer range). The minority carrier diffusion length was measured by EBIC at different points of the atmospheres. Structural distortion at the regions surrounding the dislocation core were observed by micro-Raman spectroscopy. The carrier depletion depth and the recombination of the photogenerated carriers were also studied by Raman spectroscopy, obtaining a good agreement with the EBIC data and the photoetching rates. Impurity gettering and diffusion and defect reactions involving As interstitials are assumed to play a major role in the formation of the recombinative atmospheres.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Michel, G., Vendura, G. J., and Marck, H. S., J. Electron. Mater. 16, 295 (1989).CrossRefGoogle Scholar
2.Miyazawa, S., Defects in Semiconductors, edited by Von Bandeleben, H. J. (Materials Science Forum, 1986), Vol. 10–12, p. 1.Google Scholar
3.Habermaier, H. U., Inst. Phys. Conf. Ser. 149, 171 (1996).Google Scholar
4.Weyher, J. L. and Van de Ven, J., J. Cryst. Growth 78, 191 (1986).CrossRefGoogle Scholar
5.Visser, E.P., Van der Wel, P. J., Weyher, J. L., and Giling, L., J. Appl. Phys. 68, 4242 (1990).CrossRefGoogle Scholar
6.Frigeri, C. and Weyher, J. L., J. Cryst. Growth 103, 268 (1990).CrossRefGoogle Scholar
7.Frigeri, C. and Weyher, J.L., J. Appl. Phys. 65, 4646 (1989).CrossRefGoogle Scholar
8.Weyher, J. L., Van der Wel, P.J., and Frigeri, C., J. Cryst. Growth 103, 46 (1990).CrossRefGoogle Scholar
9.Weyher, J. L., Frigeri, C., and Van der Wel, P. J., Semicond. Sci. Technol. 7, A294 (1992).CrossRefGoogle Scholar
10.Pollak, F. H., in Analytical Raman Spectroscopy, edited by Graselli, J. G., Chem. Anal. Ser. (Wiley, New York, 1992), Vol. 114, Chap. 6.Google Scholar
11.Mooradian, A. and Wright, G. B., Phys. Rev. Lett. 22, 999 (1966).CrossRefGoogle Scholar
12.Abstreiter, G., Cardona, M., and Pinczuk, A., in Light Scattering in Solids IV, edited by Cardona, M. and Güntherodt, G., Topics in Appl. Phys. (Springer, Berlin-Heidelberg, 1989), Chap. 1.Google Scholar
13.Jiménez, J., Martin, E., Prieto, A. C., and Torres, A., Semicond. Sci. Technol. 7, A288 (1992).CrossRefGoogle Scholar
14.Martín, P., Jiménez, J., Frigeri, C., Weyher, J. L., and Sonnenberg, K., Mater. Sci. Forum 196, 1791 (1996).Google Scholar
15. Paetzold, Irmer, G., Monecke, J., Griehl, S., and Oettel, O., J. Raman Spectrosc. 24, 761 (1993).Google Scholar
16.Wang, P. D., Foad, M. A., Sotomayor-Torres, C. M., Watt, M., Chemg, R., Wilkinson, C. D. W., and Beaumont, S. P., J. Appl. Phys. 71, 3754 (1992).CrossRefGoogle Scholar
17.Montgomery, P. C., Nanotechnology 54, 1 (1990).Google Scholar
18.Creath, K., Phase Measurement—Interferometry Techniques, edited by Wolf, E., Progress in Optics XXVI (Elsevier, Amsterdam, 1988), p. 351.Google Scholar
19.Yonenaga, I. and Sumino, K., J. Appl. Phys. 65, 85 (1989).CrossRefGoogle Scholar
20.Petroff, P. M. and Kimmerling, K. C., Appl. Phys. Lett. 29, 461 (1976).CrossRefGoogle Scholar
21.Weber, E. R., Enner, H., Kaufmann, K., Windscheif, J., Schneider, J., and Wosinski, T., J. Appl. Phys. 53, 6140 (1982).CrossRefGoogle Scholar
22.Figielski, T., Appl. Phys. A 29, 199 (1982).CrossRefGoogle Scholar
23.Figielski, T., Appl. Phys. A. 36, 217 (1985).CrossRefGoogle Scholar
24.Sumino, K., in Point Extended and Surface Defects in Semiconductors, edited by Benedek, G., Cavallini, A., and Schröter, W. (Plenum, New York, 1989), p. 77.CrossRefGoogle Scholar
25.Sudandi, D. and Matsumoto, S., J. Electrochem. Soc. 136, 1165 (1989).CrossRefGoogle Scholar
26.Herzog, L., Egger, U., Breitenstein, O., and Hettwer, H. G., Mater. Sci. Eng. B 30, 43 (1995).CrossRefGoogle Scholar
27.Bourgoin, J. C., Von Bardeleben, H. J., and Stievenard, D., J. Appl. Phys. 64, R65 (1988).CrossRefGoogle Scholar
28.Frigeri, C., Inst. Phys. Conf. Ser. 87, 745 (1987).Google Scholar
29.Fujii, K., Okada, Y., and Osito, F., J. Appl. Phys. 73, 88 (1993).CrossRefGoogle Scholar
30.Frigeri, C., Weyher, J.L., Jiménez, J., and Martín, P., J. de Physique 7, 1 (1997).Google Scholar
31.Lee, J. L., Wei, L., Tanigawa, S., and Kawabe, M., J. Appl. Phys. 70, 674 (1991).CrossRefGoogle Scholar
32.Farrow, R. L., Chang, R. K., Mroczkowski, S., and Pollak, F. H., Appl. Phys. Lett. 31, 768 (1977).CrossRefGoogle Scholar
33.Nakamura, T. and Katoda, T., J. Appl. Phys. 55, 3064 (1984).CrossRefGoogle Scholar
34.Labusch, R. and Schröter, W., in Dislocations in Solids, edited by Nabarro, F. R. N. (North-Holland, Amsterdam, 1978), Vol. 5, Chap. 20.Google Scholar
35.Chu, Y. M., Darby, D. B., and Booker, G. R., Inst. Phys. Conf. Ser. 60, 331 (1981).Google Scholar
36.Martín, P., Frigeri, C., Jiménez, J., and Weyher, J. L., Mater. Sci. Eng. B42, 225 (1996).CrossRefGoogle Scholar