Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T06:41:37.488Z Has data issue: false hasContentIssue false

A Study of Microindentation Hardness Tests by Mechanism-based Strain Gradient Plasticity

Published online by Cambridge University Press:  31 January 2011

Y. Huang
Affiliation:
Department of Mechanical and Industrial Engineering, University of Illinois, Urbana, Illinois 61801
Z. Xue
Affiliation:
Department of Mechanical and Industrial Engineering, University of Illinois, Urbana, Illinois 61801
H. Gao
Affiliation:
Division of Mechanics and Computation, Stanford University, Stanford, California 94305
W. D. Nix
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305
Z. C. Xia
Affiliation:
Ford Research Laboratory, P.O. Box 2053, MD 3135/SRL, Dearborn, Michigan 48121
Get access

Abstract

We recently proposed a theory of mechanism-based strain gradient (MSG) plasticity to account for the size dependence of plastic deformation at micron- and submicronlength scales. The MSG plasticity theory connects micron-scale plasticity to dislocation theories via a multiscale, hierarchical framework linking Taylor's dislocation hardening model to strain gradient plasticity. Here we show that the theory of MSG plasticity, when used to study micro-indentation, indeed reproduces the linear dependence observed in experiments, thus providing an important self-consistent check of the theory. The effects of pileup, sink-in, and the radius of indenter tip have been taken into account in the indentation model. In accomplishing this objective, we have generalized the MSG plasticity theory to include the elastic deformation in the hierarchical framework.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nix, W.D., Met. Trans. 20A, 2217 (1989).CrossRefGoogle Scholar
2.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
3.De Guzman, M.S., Neubauer, G., Filnn, P., and Nix, W.D., in Thin Films: Stresses and Mechanical Properties IV, edited by Townsend, P.H., Weihs, T.P., and Sanchez, J.E. Jr, (Mater. Res. Soc. Symp. Proc. 308, Pittsburgh, PA, 1993), p. 613.Google Scholar
4.Stelmeshenko, N.A., Walls, M.G., Brown, L.M., and Milman, Y.V., Acta Metall. Mater. 41, 2855 (1993).CrossRefGoogle Scholar
5.Atkinson, M., J. Mater. Res. 10, 2908 (1995).CrossRefGoogle Scholar
6.Ma, Q. and Clarke, D.R., J. Mater. Res. 10, 853 (1995).CrossRefGoogle Scholar
7.Poole, W.J., Ashby, M.F., and Fleck, N.A., Scripta Metall. Mater. 34, 559 (1996).CrossRefGoogle Scholar
8.McElhaney, K.W., Vlassak, J.J., and Nix, W.D., J. Mater. Res. 13, 1300 (1998).CrossRefGoogle Scholar
9.Suresh, S., Nieh, T.G., and Choi, B.W., Scripta Mater. 41, 951 (1999).CrossRefGoogle Scholar
10.Zagrebelny, A.V., Lilleodden, E.T., Gerberich, W.W., and Carter, C.B., J. Am. Ceram. Soc. 82, 1803 (1999).CrossRefGoogle Scholar
11.Fleck, N.A. and Hutchinson, J.W., J. Mech. Phys. Solids 41, 1825 (1993).CrossRefGoogle Scholar
12.Fleck, N.A., Muller, G.M., Ashby, M.F., and Hutchinson, J.W., Acta Metall. Mater. 42, 475 (1994).CrossRefGoogle Scholar
13.Shu, J.Y. and Fleck, N.A., Int. J. Solids Struct. 35, 1363 (1998).CrossRefGoogle Scholar
14.Fleck, N.A. and Hutchinson, J.W., Adv. Appl. Mech. 33, 295 (1997).CrossRefGoogle Scholar
15.Begley, M.R. and Hutchinson, J.W., J. Mech. Phys. Solids 46, 2049 (1998).CrossRefGoogle Scholar
16.Nix, W.D. and Gao, H., J. Mech. Phys. Solids 46, 411 (1998).CrossRefGoogle Scholar
17.Taylor, G.I., J. Inst. Metals 62, 307 (1938).Google Scholar
18.Aifantis, E.C., Trans. ASME J. Eng. Mater. Technol. 106, 326 (1984).CrossRefGoogle Scholar
19.Muhlhaus, H.B. and Aifantis, E.C., Int. J. Solids Struct. 28, 845 (1991).CrossRefGoogle Scholar
20.Zbib, H. and Aifantis, E.C., Res. Mech. 23, 261 (1989).Google Scholar
21.Acharya, A. and Bassani, J.L., J. Mech. Phys. Solids 48, 1565 (2000).CrossRefGoogle Scholar
22.Dai, H. and Parks, D.M. (unpublished).Google Scholar
23.Arsenlis, A. and Parks, D.M., Acta Mater. 47, 1597 (1999).CrossRefGoogle Scholar
24.Gao, H., Huang, Y., Nix, W.D., and Hutchinson, J.W., J. Mech. Phys. Solids 47, 1239 (1999).CrossRefGoogle Scholar
25.Huang, Y., Gao, H., Nix, W.D., and Hutchinson, J.W., J. Mech. Phys. Solids 48, 99 (2000).CrossRefGoogle Scholar
26.Gao, H., Huang, Y., and Nix, W.D., Naturwissenschaften 86, 507 (1999).CrossRefGoogle Scholar
27.Stolken, J.S. and Evans, A.G., Acta Mater. 46, 5109 (1998).CrossRefGoogle Scholar
28.Shi, M.X., Huang, Y., Gao, H. and Hwang, K.C., Int. J. Solids Struct. (in press, 2000).Google Scholar
29.Shi, M.X., Huang, Y., and Hwang, K.C., Int. J. Mech. Sci. (in press, 2000).Google Scholar
30.Bishop, J.F.W and Hill, R., Philos. Mag. 42, 414 (1951).CrossRefGoogle Scholar
31.Bishop, J.F.W and Hill, R., Philos. Mag. 42, 1298 (1951).CrossRefGoogle Scholar
32.Kocks, U.F., Metall. Trans. 1, 1121 (1970).CrossRefGoogle Scholar
33.Nix, W.D. and Gibeling, J.C., in Metals/Materials Technology Series 8313–004 (ASM, Metals Park, OH, 1985).Google Scholar
34.Parks, D.M. (private communications).Google Scholar
35.Huang, Y., Gao, H., and Hwang, K.C., in Progress in Mechanical Behavior of Materials, edited by Ellyin, F. and Provan, J.W. (Fleming Printing, Victoria, BC, Canada, 1999), p. 1051.Google Scholar
36.Xia, Z.C. and Hutchinson, J.W., J. Mech. Phys. Solids 44, 1621 (1996).CrossRefGoogle Scholar
37.Wei, Y. and Hutchinson, J.W., J. Mech. Phys. Solids 45, 1253 (1997).CrossRefGoogle Scholar
38.Huang, Y., Chen, J.Y., Guo, T.F., Zhang, L., and Hwang, K.C., Int. J. Fracture 100, 1 (1999).CrossRefGoogle Scholar
39.Chen, J.Y., Wei, Y., Huang, Y., Hutchinson, J.W., and Hwang, K.C., Eng. Fracture Mech. 64, 625 (1999).CrossRefGoogle Scholar
40.Shu, J.Y., King, W.E., and Fleck, N.A., Int. J. Numer. Methods Eng. 44, 373 (1999).3.0.CO;2-7>CrossRefGoogle Scholar
41.Specht, B., Int. J. Numer. Methods Eng. 26, 705 (1988).CrossRefGoogle Scholar
42.Zienkiewicz, O.C. and Taylor, R.L., The Finite Element Method, 4th ed. (McGraw-Hill, New York, 1989).Google Scholar
43.Huang, Y., Zhang, L., Guo, T.F., and Hwang, K.C., in Proceedings of IUTAM Symposium on Nonlinear Analysis of Fracture, edited by Willis, J.R. (Kluwer Academic Publishers, Dordrecht, The Netherlands 1997), p. 231.CrossRefGoogle Scholar
44.Huang, Y., Zhang, L., Guo, T.F., and Hwang, K.C., J. Mech. Phys. Solids 45, 439 (1997).CrossRefGoogle Scholar
45.Zhang, L., Huang, Y., Chen, J.Y., and Hwang, K.C., Int. J. Fracture 92, 325 (1998).CrossRefGoogle Scholar
46.Doerner, M.F. and Nix, W.D., J. Mater. Res. 1, 601 (1986).CrossRefGoogle Scholar
47.Nix, W.D. (unpublished).Google Scholar
48.McLean, D., Mechanical Properties of Metals (John Wiley and Sons, New York, 1962).Google Scholar