Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-05T11:50:48.035Z Has data issue: false hasContentIssue false

Study of diamond growth from a variety of input gases

Published online by Cambridge University Press:  03 March 2011

K.L. Menningen
Affiliation:
Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, Wisconsin 53706
C.J. Erickson
Affiliation:
Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, Wisconsin 53706
M.A. Childs
Affiliation:
Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, Wisconsin 53706
L.W. Anderson
Affiliation:
Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, Wisconsin 53706
J.E. Lawler
Affiliation:
Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, Wisconsin 53706
Get access

Abstract

The gas phase densities of CH3 and CH and the hydrogen dissociation fraction are measured in a hot filament diamond deposition system for each of several different hydrocarbon input gases. The crystal growth rate and the appearance of the diamond grown from the different input gases are also examined. A comparison of the measurements indicates that the nature of the input hydrocarbon is relatively unimportant because fast gas phase reactions completely scramble the identities of the input carbon atoms. The addition of oxygen greatly alters the gas phase densities and other experimental factors such as the filament surface condition. Small concentrations of atomic impurities in the gas phase are also detected using high sensitivity absorption spectroscopy.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Celii, F. G. and Butler, J. E., A. Rev. Phys. Chem. 42, 643 (1991).CrossRefGoogle Scholar
2Butler, J. E. and Woodin, R. L., Philos. Trans. R. Soc. London A 342, 209 (1993).Google Scholar
3Sun, B., Zhang, X., and Lin, Z., Phys. Rev. B 47, 9816 (1993).CrossRefGoogle Scholar
4Chu, C. J., D'Evelyn, M.P., Hauge, R. H., and Margrave, J.L., J. Appl. Phys. 70, 1695 (1991); D'Evelyn, M.P., Chu, C. J., Hauge, R. H., and Margrave, J. L., J. Appl. Phys. 71, 1528 (1992).CrossRefGoogle Scholar
5Angus, J. C. and Hayman, C. C., Science 241, 913 (1988).CrossRefGoogle Scholar
6Klages, C-P., Appl. Phys. A 56, 513 (1993).Google Scholar
7Bachmann, P. K., Leers, D., and Lydtin, H., Diamond Relat. Mater. 1, 1 (1991); Bachmann, P. K., Leers, D., and Wiechert, D.U., J. Phys. (Paris) IV 1, C2-907 (1991).Google Scholar
8Stoner, B. R., Sahaida, S. R., Bade, J. P., Southworth, P., and Ellis, P. J., J. Mater. Res. 8, 1334 (1993).CrossRefGoogle Scholar
9Hirose, Y. and Terasawa, Y., Jpn. J. Appl. Phys. 25, L519 (1986).Google Scholar
10Martin, L. R. and Hill, M. W., J. Mater. Sci. Lett. 9, 621 (1990).CrossRefGoogle Scholar
11Yarbrough, W. A., Tankala, K., and DebRoy, T., J. Mater. Res. 7 379 (1992).Google Scholar
12Johnson, C. E., Weimer, W. A., and Cerio, F. M., J. Mater. Res. 7, 1427 (1992).Google Scholar
13Lee, S. S., Minsek, D. W., Vestyck, D. J., and Chen, P., Science 263, 1596 (1994).Google Scholar
14Childs, M. A., Menningen, K. L., Chevako, P., Spellmeyer, N. W., Anderson, L. W., and Lawler, J. E., Phys. Lett. A 171, 87 (1992).Google Scholar
15Menningen, K. L., Childs, M. A., Chevako, P., Toyoda, H., Anderson, L. W., and Lawler, J. E., Chem. Phys. Lett. 204, 573 (1993).Google Scholar
16Toyoda, H., Childs, M. A., Menningen, K. L., Anderson, L. W., and Lawler, J. E., J. Appl. Phys. 75, 3142 (1994).CrossRefGoogle Scholar
17Childs, M. A., Menningen, K. L., Toyoda, H., Anderson, L. W., and Lawler, J. E., Europhys. Lett. 25, 729 (1994).CrossRefGoogle Scholar
18Menningen, K. L., Childs, M. A., Toyoda, H., Ueda, Y., Anderson, L. W., and Lawler, J. E., Diamond Relat. Mater. 3, 422 (1994).Google Scholar
19Glänzer, K., Quack, M., and Troe, J., 16th Symp. (Int.) on Combustion (The Combustion Institute, Pittsburgh, PA, 1977), p. 949.Google Scholar
20Garland, N. L. and Crosley, D. R., J. Quant. Spectros. Radiat. Transfer 33, 591 (1985).CrossRefGoogle Scholar
21Linevsky, M. J., J. Chem. Phys. 47, 3485 (1967).Google Scholar
22Chen, K. H., Chuang, M. C., Penney, C. M., and Banholzer, W. F., J. Appl. Phys. 71, 1485 (1992).CrossRefGoogle Scholar
23Leyendecker, G., Doppelbauer, J., Bäuerle, D., Geittner, P., and Lydtin, H., Appl. Phys. A 30, 237 (1983).CrossRefGoogle Scholar
24Harris, S. J., Weiner, A. M., and Perry, T. A., Appl. Phys. Lett. 53, 1605 (1988).CrossRefGoogle Scholar
25Meier, U. E., Hunziker, L. E., Crosley, D. R., and Jeffries, J. B., Proc. 2nd Int. Symp. Diamond Materials (The Electrochemical Society, Pennington, NJ, 1991), Vol. 91–8, p. 202.Google Scholar
26Wu, C-H., Tamor, M. A., Potter, T. J., and Kaiser, E. W., J. Appl. Phys. 68, 4825 (1990).Google Scholar
27Harris, S. J. and Weiner, A. M., J. Appl. Phys. 67, 6520 (1990).CrossRefGoogle Scholar
28Hsu, W. L., Appl. Phys. Lett. 59, 1427 (1991).CrossRefGoogle Scholar
29Kweon, D-W. and Lee, J-Y., Mater. Res. Bull. XXVII, 783 (1992).Google Scholar
30Sommer, M. and Smith, F. W., J. Mater. Res. 5, 2433 (1990).Google Scholar
31Celii, F. G. and Butler, J. E., Appl. Phys. Lett. 54, 1031 (1989).Google Scholar
32Menningen, K. L., Childs, M. A., Toyoda, H., Anderson, L. W., and Lawler, J. E., J. Mater. Res. 9, 915 (1994).CrossRefGoogle Scholar
33Sommer, M. and Smith, F. W., J. Vac. Sci. Technol. A 9, 1134 (1991).Google Scholar
34Goodwin, D. G. and Gavillet, G. G., J. Appl. Phys. 68, 6393 (1990).CrossRefGoogle Scholar
35Winters, H. F., Seki, H., Rye, R. R., and Coltrin, M. E., J. Appl. Phys. 76, 1220 (1994).CrossRefGoogle Scholar
36Rye, R. R., J. Appl. Phys. 76, 1228 (1994); Harris, S.J., private communication.CrossRefGoogle Scholar
37Kee, R. J., Rupley, F. M., and Miller, J.A., in Sandia National Laboratories Reports, reports SAND-8215B and SAND89-8009B (1992). These reports and associated software comprise the CHEMKIN-II thermodynamic database used to calculate the reaction equilibrium constant.Google Scholar
38Childs, M. A., Menningen, K. L., Toyoda, H., Ueda, Y., Anderson, L. W., and Lawler, J. E., Phys. Lett. A 194, 119 (1994).Google Scholar
39Harris, S. J. and Weiner, A. M., Appl. Phys. Lett. 55, 2179 (1989).CrossRefGoogle Scholar
40Chen, Z., Wirtz, G. P., and Brown, S. D., J. Am. Ceram. Soc. 75, 2107 (1992).Google Scholar
41Meier, U., Kohse-Hoinghaus, K., Schafer, L., and Klages, C. P., Appl. Opt. 29, 4993 (1990).CrossRefGoogle Scholar
42Harris, S. J. and Weiner, A. M., J. Appl. Phys. 75, 5026 (1994).Google Scholar
43Childs, M. A., Menningen, K. L., Anderson, L. W., and Lawler, J. E., unpublished.Google Scholar
44Wada, N. and Solin, S. A., Physica B & C 105B, 353 (1981).Google Scholar
45Yarbrough, W. A. and Messier, R., Science 247, 688 (1990).Google Scholar
46Kobashi, K., Nishimura, K., Kawate, Y., and Horiuchi, T., Phys. Rev. 38, 4067 (1988).Google Scholar
47Martinson, I., Curtis, L. J., Huldt, S., Litzén, U., Liljeby, L., Mannervik, S., and Jelenkovic, B., Physica Scripta 19, 17 (1979).CrossRefGoogle Scholar
48Migdalek, J. and Baylis, W. E., J. Phys. B 12, 2595 (1979).CrossRefGoogle Scholar