Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T23:35:39.391Z Has data issue: false hasContentIssue false

Study of cluster-assembled nanophase copper using NMR

Published online by Cambridge University Press:  03 March 2011

B.H. Suits
Affiliation:
Physics Department, Michigan Technological University, Houghton, Michigan 49931-1295
M. Meng
Affiliation:
Physics Department, Michigan Technological University, Houghton, Michigan 49931-1295
R.W. Siegel
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
Y.X. Liao
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
Get access

Abstract

Cu NMR spectra from cluster-assembled nanophase copper with an average grain size between 5 and 10 nm show a broadened peak, at the normal Knight-shifted frequency for copper metal, which arises from only the central 1/2 to −1/2 transition. The broadening of the central line is associated with a distribution of Knight shifts. A very broad background is observed on either side of that peak, associated with broadening due to internal electric field gradients. Pulsed NMR measurements of the central peak show that virtually all the copper signals are significantly broadened and have a spin-spin relaxation time longer than larger-grained copper samples. The strain within the grains is estimated to be 0.7%. Line shape measurements as a function of spin echo delay time show there are a number of copper sites with longer relaxation times which have a significantly larger broadening. Those sites are tentatively identified as being at or near a grain boundary or free surface. A small orientation effect is observed indicating an anisotropy within the samples. An isochronal anneal of one sample showed significant line narrowing after an anneal at 450 °C consistent with other nanophase metals which show grain growth above 40-50% of the absolute melting temperature. The dependence of NMR linewidth on average grain diameter is estimated.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Suryanarayana, C., Mukhopadhyay, D., Patankar, S. N., and Froes, F. H., J. Mater. Res. 7, 2114 (1992).CrossRefGoogle Scholar
2Suits, B. H., Meng, M., Siegel, R. W., and Liao, Y. X., in Nanophase and Nanocomposite Materials, edited by Komarneni, S., Parker, J. C., and Thomas, G. J. (Mater. Res. Soc. Symp. Proc. 286, Pittsburgh, PA, 1993), p. 137.Google Scholar
3Dickenscheid, W., Birringer, R., Gleiter, H., Kanert, O., Michel, B., and Günther, B., Solid State Commun. 79, 683 (1991).CrossRefGoogle Scholar
4Horváth, J., Birringer, R., and Gleiter, H., Solid State Commun. 62, 319 (1987).CrossRefGoogle Scholar
5Cousty, J., Peix, R., and Peraillon, B., Surf. Sci. 107, 586 (1981).CrossRefGoogle Scholar
6Nieman, G. W., Weertman, J. R., and Siegel, R. W., J. Mater. Res. 6, 1012 (1991).CrossRefGoogle Scholar
7Siegel, R. W., MRS Bull. XV, 60 (1990).CrossRefGoogle Scholar
8Knight, W. D., Solid State Phys. 2, 93 (1956).Google Scholar
9Stauss, G. H., J. Chem. Phys. 40, 1988 (1964).CrossRefGoogle Scholar
10Kanert, O. and Mehring, M., in NMR-Basic Principles and Progress, edited by Diehl, P., Fluck, E., and Kosfeld, R. (Springer-Verlag, Berlin, 1971), Vol. 3, p. 1.Google Scholar
11Kanert, O., Phys. Status Solidi 32, 667 (1969).CrossRefGoogle Scholar
12Eastman, J. A., Fitzsimmons, M. R., and Thompson, L. J., Philos. Mag. B 66, 667 (1992).CrossRefGoogle Scholar
13Fitzsimmons, M. R., Eastman, J. A., Müller-Stach, M., and Wallner, G., Phys. Rev. B 44, 2452 (1991).CrossRefGoogle Scholar
14Wolf, D. and Lutsko, J. F., Phys. Rev. Lett. 60, 1170 (1988).CrossRefGoogle Scholar
15Abragam, A., Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1961).Google Scholar
16Ailion, D. C., Case, T. A., Blatter, D. D., Morris, A. H., Cutillo, A. G., Durney, C. H., and Johnson, S. A., Bull. Magn. Res. 6 (3), 131 (1984).Google Scholar
17Drain, L. E., Proc. Phys. Soc. (London) 80, 1380 (1962).CrossRefGoogle Scholar
18Nieman, G. W. and Weertman, J. R., Proceedings of the Morris E. Fine Symposium, Detroit, 1990, edited by Liaw, P. K., Weertman, J. R., Marcus, H. L., and Santer, J. S. (The Minerals, Metals and Materials Society, Warrendale, PA, 1991), p. 243.Google Scholar
19Siegel, R. W., Ann. Rev. Mater. Sci. 21, 559 (1991).CrossRefGoogle Scholar
20Wu, X., Zhang, H., Qin, X., Chen, L., Wang, G., and Fang, R., in Nanophase and Nanocomposite Materials, edited by Komarneni, S., Parker, J. C., and Thomas, G. J. (Mater. Res. Soc. Symp. Proc. 286, Pittsburgh, PA, 1993), p. 149.Google Scholar