Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T02:35:20.274Z Has data issue: false hasContentIssue false

Structures, dielectric and ferroelectric properties of Sr2-xCaxNaNb5O15 lead-free ceramics

Published online by Cambridge University Press:  16 March 2012

Lingling Wei
Affiliation:
Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Materials Science, Shaanxi Normal University, Xi’an 710062, Shaanxi, P.R. China
Zupei Yang*
Affiliation:
Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Materials Science, Shaanxi Normal University, Xi’an 710062, Shaanxi, P.R. China
Xiaokun Han
Affiliation:
Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Materials Science, Shaanxi Normal University, Xi’an 710062, Shaanxi, P.R. China
Zhaohu Li
Affiliation:
Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Materials Science, Shaanxi Normal University, Xi’an 710062, Shaanxi, P.R. China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The high-density tungsten bronze (TB) Sr2-xCaxNaNb5O15 (SCNN, 0.05 ≤ x ≤ 030) lead-free ceramics were prepared by two-step solid-state reaction method. With increasing Ca2+ substitution, the crystal structure of SCNN ceramics slightly distorted from the TB tetragonal phase and became orthorhombic phase at room temperature. The smaller ionic radius of Ca2+ (1.34Å) compared with that of Sr2+ (1.44Å) contributed to the shrinkage of the crystal structure. Dielectric spectra of all compositions displayed two phase transitions: the ferroelastic orthorhombic to ferroelectric tetragonal phase transition (Te) at lower temperatures, and the ferroelectric to paraelectric phase transition (Tc) at higher temperatures. With increasing Ca2+ substitution, Te and Tc shifted towards higher temperature regions, while the maximum values of dielectric constant (εme and εm), Pr, Ec and d33 increased at first and then decreased. The ceramics with most homogeneous microstructure and highest density were obtained at x = 0.15, resulting in optimized properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kakimoto, K., Yoshifuji, T., and Ohsato, H.: Densification of tungsten-bronze KBa2Nb5O15 lead-free piezoelectric ceramics. J. Eur. Ceram. Soc. 27, 4111 (2007).CrossRefGoogle Scholar
2.Ahamad Mohiddon, Md. and Yadava, K.L.: Structural and dielectric properties of (Li0.5Na0.5) doped strontium barium niobate. J. Appl. Phys. 101, 094101 (2007).CrossRefGoogle Scholar
3.Ke, S.M., Fan, H.Q., Huang, H.T., Chan, H.L.W., and Yu, S.H.: Dielectric, ferroelectric properties, and grain growth of CaxBa1−xNb2O6 ceramics with tungsten-bronzes structure. J. Appl. Phys. 104, 024101 (2008).CrossRefGoogle Scholar
4.Wei, L.L., Yang, Z.P., Gu, R., and Ren, H.M.: The phase formation, microstructure and electric properties of tungsten bronze ferroelectric Sr2NaNb5O15 ceramics. J. Am. Ceram. Soc. 93, 1984 (2010).CrossRefGoogle Scholar
5.Fang, T.T. and Chiu, T.Y.: Polarization dynamics of polar nano-regions in Sr0.5Ba0.5Nb2O6 doped with combinations of Ce and Cr. Acta Mater. 59, 1692 (2011).CrossRefGoogle Scholar
6.Neurgaonkar, R.R., Oliver, J.R., Copy, W.K., Cross, L.E., and Viehland, D.: Piezoelectricity in tungsten bronze crystals. Ferroelectr. 160, 265 (1994).CrossRefGoogle Scholar
7.Kimura, T., Miyamoto, S., and Yamaguchi, T.: Microstructure development and dielectric properties of potassium strontium niobate ceramics. J. Am. Ceram. Soc. 73, 127 (1990).CrossRefGoogle Scholar
8.Lee, H.Y. and Freer, R.: Abnormal grain growth and liquid-phase sintering in Sr0.6Ba0.4Nb2O6 (SBN40) ceramics. J. Mater. Sci. 33, 1703 (1998).CrossRefGoogle Scholar
9.Wei, L.L., Yang, Z.P., Chang, Y.F., and Gu, R.: Effect of seeding Sr2KNb5O15 on the phase formation and microstructural development in reactive sintering of Sr2NaNb5O15 ceramics. J. Am. Ceram. Soc. 91, 1077 (2008).CrossRefGoogle Scholar
10.Xie, R.J. and Akimune, Y.: Lead-free piezoelectric ceramics in the (1-x) Sr2NaNb5O15-xCa2NaNb5O15 (x = 0.05-0.35) system. J. Mater. Chem. 12, 3156 (2002).CrossRefGoogle Scholar
11.Xie, R.J., Akimune, Y., Matsuo, K., Sugiyama, T., Hirosaki, N., and Sekiya, T.: Dielectric and ferroelectric properties of tetragonal tungsten bronze Sr2-xCaxNaNb5O15 (x = 0.05-0.35) ceramics. Appl. Phys. Lett. 80, 835 (2002).CrossRefGoogle Scholar
12.Xie, R.J., Akimune, Y., Wang, R.P., and Hirosaki, N.: Spark plasma sintering of tungsten bronze Sr2-xCaxNaNb5O15 (x = 0.1) piezoelectric ceramics: II. Electrical properties. J. Am. Ceram. Soc. 85, 2731 (2002).CrossRefGoogle Scholar
13.Wei, L.L., Yang, Z.P., Ren, H.M., and Chen, X.B.: Phase transitional behavior and electrical properties of Sr2K0.1Na0.9Nb5-xTaxO15 ceramics. J. Am. Ceram. Soc. 93, 3986 (2010).CrossRefGoogle Scholar
14.Wei, L.L., Yang, Z.P., Gu, R., and Pan, H.: Role of structural changes in dielectric, ferroelectric properties of Sr2KxNa1−xNb5O15 lead-free ceramics. Mater. Chem. Phys. 126, 836 (2011).CrossRefGoogle Scholar
15.Simon, A. and Ravez, J.: Solid-state chemistry and non-linear properties of tetragonal tungsten bronzes materials. C.R. Chim. 9, 1268 (2006).CrossRefGoogle Scholar