Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T11:14:34.708Z Has data issue: false hasContentIssue false

Structure of improved tribological properties of V–5at.%Ti alloys by nitrogen implantation at low energy

Published online by Cambridge University Press:  18 July 2011

I. Colera*
Affiliation:
Universidad Carlos III de Madrid, Departimento de Física, Avenida de la Universidad 30, 28911 Madrid, Spain
E. Roman
Affiliation:
Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid, Spain
J.A. García
Affiliation:
AIN-Centro de Ingeniería Avanzada de Superficies, Cordobilla, 31191 Pamplona, Spain
R. Rodríguez
Affiliation:
AIN-Centro de Ingeniería Avanzada de Superficies, Cordobilla, 31191 Pamplona, Spain
C. Ballesteros
Affiliation:
Universidad Carlos III de Madrid, Departimento de Física, Avenida de la Universidad 30, 28911 Madrid. Spain
J.L. de Segovia
Affiliation:
Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid, Spain
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The aim of the present work was to study the morphological, structural, and chemical analysis as a function of depth in vanadium alloys with a 5 at.% of titanium implanted at 673 K with 1.2 keV N+ ions, by transmission electron microscopy (TEM), glow discharge (GD) analysis, and x-ray photoemission spectroscopy. These results are correlated with those of previously published nanoindentation tests, and the species and chemical states responsible for the increase in hardness are identified. The maximum increase in hardness corresponds to the highest N concentration, measured by both photoemission spectroscopy and GD. In addition, the thickness of the layer (≈1000 nm), where structural modifications are observed using TEM, can also be directly correlated with the thickness of the implanted layer, where an incremental increase in hardness has previously been measured. These findings support the conclusion that the formation of vanadium and titanium nitride/oxynitrides (–N–O,–O–N–H) compounds are responsible for the increased hardness of these V–5at.% Ti samples implanted with N at low ion energy and high sample temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Leguey, T., Muñoz, A., and Pareja, R.: Effect of Ti solute on the recovery of cold-rolled V-Ti alloys. J. Nucl. Mater. 275, 138 (1999).CrossRefGoogle Scholar
2Nagasaka, T., Muroga, T., Fukumoto, K., Watanabe, H., Grossbeck, M.L., and Chen, J.M.: Development of fabrication technology for low activation vanadium alloys as fusion blanket structural materials. Nucl. Fusion 46, 618 (2006).CrossRefGoogle Scholar
3Rodríguez, R.J., Sanz, A.L., and Medrano, A.: The search for new applications of ion implantation treatments. Surf. Coat. Technol. 84, 594 (1996).CrossRefGoogle Scholar
4García, J.A., Rodríguez, R.J., Medrano, A., Rico, M., Martínez, R., Lerga, B., Labrugère, C., Lahaye, M., and Guette, A.: Study of the tribological modifications induced by nitrogen implantation on metals of the V group. Surf. Coat. Technol. 158–159, 653 (2002).CrossRefGoogle Scholar
5Berberich, F., Matz, W., Richter, E., Schell, N., Kreibig, U., and Möller, W.: Structural mechanisms of the mechanical degradation of Ti-Al-V alloys: In situ study during annealing. Surf. Coat. Technol. 128–129, 450 (2000).CrossRefGoogle Scholar
6García, J.A., Sánchez, R., Martínez, R., Medrano, A., Rico, M., Rodríguez, R., Varela, M., Colera, I., Cáceres, D., Vergara, I., Ballesteros, C., Roman, E., and de Segovia, J.L.: Surface mechanical effects of nitrogen ion implantation on vanadium alloys. Surf. Coat. Technol. 158–159, 669 (2002).CrossRefGoogle Scholar
7Arranz, A.: Synthesis of Hafnium nitride films by 0.5–5 keV nitrogen implantation of metallic Hf: An x-ray photoelectron spectroscopy and factor analysis study. Surf. Sci. 563, 1 (2004).CrossRefGoogle Scholar
8Gouzman, I., Brener, R., and Hoffman, A.: Nitridation of diamond and graphite surfaces by low energy N2+ ion irradiation. Surf. Sci. 331–333, 283 (1995).CrossRefGoogle Scholar
9Byeli, A.V., Lobodaeva, O.V., Shykh, S.K., and Kukareko, V.A.: Solid-state amorphization of a tool steel by high-current-density, low-energy nitrogen ion implantation. Nucl. Instrum. Methods Phys. Rev., Sect. B 103, 533 (1995).CrossRefGoogle Scholar
10Jones, A.M. and Bull, S.J.: Changing the tribological performance of steels using low energy, high temperature nitrogen ion implantation. Surf. Coat. Technol. 83, 269 (1996).CrossRefGoogle Scholar
11García, J.A., Rodríguez, R., Sánchez, R., Martínez, R., Varela, M., Cáceres, D., Muñoz, A., Vergara, I., and Ballesteros, C.: Tribological study of vanadium-based alloys ion implanted at low energy and high temperature. Vacuum 67, 543 (2002).CrossRefGoogle Scholar
12García, J.A., Fuentes, G.G., Martínez, R., Rodríguez, R.J., Abrasonis, G., Riviere, J.P., and Rius, J.: Temperature-dependent tribological properties of low-energy N-implanted V5Ti alloys. Surf. Coat. Technol. 188–189, 459 (2004).CrossRefGoogle Scholar
13Roman, E., Huttel, Y., López, M.F., Gago, R., Climent-Font, A., Muñoz-Martín, A., and Cebollada, A.: Structure of MgO/V/MgO(001) thin films studied by the combination of x-ray photoemission and ion beam analysis techniques. Surf. Sci. 600, 497 (2006).CrossRefGoogle Scholar
14Estrade-Szwarckopf, H. and Rousseau, B.: Photoelectron core level spectroscopy study of Cs-graphite intercalation compounds: 1. Clean surfaces study. J. Phys. Chem. Solids 53, 419 (1992).CrossRefGoogle Scholar
15Vasco, E., Böhme, O., Román, E., and Zaldo, C.: Origin and control of the lead-enriched near-surface region of (Pb,La)TiO3. Appl. Phys. Lett. 78, 2037 (2001).CrossRefGoogle Scholar
16Nelis, T. and Payling, R.: Glow Discharge Optical Emission Spectroscopy edited by Barnett, N.W. (Royal Society of Chemistry, Cambridge, U.K., 2003) pp. 136146.Google Scholar
17Varela, M., Fernández, B., Muñoz, A., Leguey, T., Pareja, R., and Ballesteros, C.: Titanium segregation mechanism in deformed vanadium-titanium alloys. Philos. Mag. Lett. 81, 259 (2001).CrossRefGoogle Scholar
18Choi, Jeong-Gil: The surface properties of vanadium compounds by x-ray photoelectron spectroscopy. Appl. Surf. Sci. 148, 64 (1999).CrossRefGoogle Scholar
19Bertoncello, R., Casagrande, R., Casarin, M., Glisenti, A., Lanzoni, E., Mirenghi, L., and Tondello, E.: TiN, TiC and Ti(C,N) film characterization and its relationship to tribological behaviour. Surf. Interface Anal. 18, 525 (1992).CrossRefGoogle Scholar
20Silversmit, G., Depla, D., Poelman, H., Marin, G.B., and De Gryse, R.: Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0). J. Electron. Spectrosc. Relat. Phenom. 135, 167 (2004).CrossRefGoogle Scholar
21Bertóli, I., Mohai, M., Sullivan, J.L., and Saied, S.O.: Surface characterisation of plasma-nitrided titanium: an XPS study. Appl. Surf. Sci. 84, 357 (1995).CrossRefGoogle Scholar
22Cáceres, D., Colera, I., Vergara, I., Gonzalez, R., and Román, E.: Characterization of MgO thin films grown by rf-sputtering. Vacuum 67, 577 (2002).CrossRefGoogle Scholar
23Kuznetsov, M.V., Zhuravlev, J.F., Zhilyaev, V.A., and Gubanov, V.A.: XPS study of the nitrides, oxides and oxynitrides of titanium. J. Electron. Spectrosc. Relat. Phenom. 58, 1 (1992).CrossRefGoogle Scholar
24Galesic, I. and Kolbesen, B.O.: Formation of vanadium nitride by rapid thermal processing. Thin Solid Films 349, 14 (1999).CrossRefGoogle Scholar
25Bouchet-Fabre, B., Zellama, K., Godet, C., Ballutaud, D., and Minéa, T.: Comparative study of the structure of a-CNx and a-CNx:H films using NEXAFS, XPS and FT-IR analysis. Thin Solid Films 482, 156 (2005).CrossRefGoogle Scholar
26Wiame, H., Bois, L., Lharidon, P., Laurent, Y., and Grange, P.: Synthesis and XPS characterization of a novel aluminovanadate oxynitride basic catalyst: Influence of nitridation temperature. Solid State Ionics 101–103, 755 (1997).CrossRefGoogle Scholar
27Wiame, H., Cellier, C., and Grange, P.: Identification of the basic site on the aluminovanadate oxynitride catalysts. J. Catal. 190, 406 (2000).CrossRefGoogle Scholar
28Zhao, X-A., Ong, C.W., Tsang, Y.C., Choy, C.L., and Chan, P.W.: Structure and mechanical properties of dual-ion-beam deposited CNxTiy/TiN multilayers. J. Vac. Sci. Technol., A 15, 99 (1997).CrossRefGoogle Scholar