Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T12:51:50.752Z Has data issue: false hasContentIssue false

Structure of composition-modulated Cu/Ni thin films prepared by electrodeposition

Published online by Cambridge University Press:  31 January 2011

J. Yahalom
Affiliation:
Department of Materials Engineering, Technion-Israel Institute of Technology, Haifa, Israel
D. F. Tessier
Affiliation:
Alcan International Limited, Kingston Research and Development Centre, P.O. Box 8400, Kingston, Ontario, Canada K7L 5L9
R. S. Timsit
Affiliation:
Alcan International Limited, Kingston Research and Development Centre, P.O. Box 8400, Kingston, Ontario, Canada K7L 5L9
A. M. Rosenfeld
Affiliation:
Alcan International Limited, Kingston Research and Development Centre, P.O. Box 8400, Kingston, Ontario, Canada K7L 5L9
D. F. Mitchell
Affiliation:
Division of Chemistry, National Research Council of Canada, Ottawa, Ontario, Canada KIA OR9
P. T. Robinson
Affiliation:
Division of Chemistry, National Research Council of Canada, Ottawa, Ontario, Canada KIA OR9
Get access

Abstract

Copper/nickel multilayered thin-films prepared by electrodeposition have been examined in cross section by electron energy loss spectroscopy and high-resolution transmission electron microscopy. The results of the examinations provide the first direct experimental evidence of the large composition modulation across successive layers in the thin-film structure and the coherent nature of Cu/Ni interfaces.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Multilayers: Synthesis, Properties and Non-Electronic Applications, Mater. Res. Soc. Proc. 103, edited by Barbee, T. W., Spaepen, F., and Greer, L. (1988).Google Scholar
2Interfaces, Superlattices, and Thin Films, Mater. Res. Soc. Symp. Proc. 77, edited by Barbee, T. W. Jr , Spaepen, F., and Greer, L. (1987).Google Scholar
3Shinjo, T., in Metallic Superlattices, edited by Shinjo, T. and Takada, T. (Elsevier Science Pub. Co., New York, 1987).Google Scholar
4Falco, C. M. and Schuller, I. K., in Synthetic Modulated Structures, edited by Chang, L. L. and Giessen, B. C. (Academic Press, 1985), p. 339.CrossRefGoogle Scholar
5Yahalom, J. and Zadok, O., J. Mater. Sci. 22, 499 (1987); J. Yahalom and O. Zadok, U.S. Patent No. 4652348 (1987).CrossRefGoogle Scholar
6Lashmore, D.S. and Dariel, M. P., J. Electrochem. Soc. 135, 1218 (1988).CrossRefGoogle Scholar
7Nakahara, S., Schutz, R. J., and Testardi, L. R., Thin Solid Films 72, 277 (1980).CrossRefGoogle Scholar
8Mitchell, D.F. and Graham, M. J., J. Vac. Sci. Technol. A5, 1258 (1987).CrossRefGoogle Scholar
9Ottensmeyer, F. P. and Andrew, J. W., J. Ultrastruct. Res. 72, 336 (1980).CrossRefGoogle Scholar
10Timsit, R. S., Hutchison, J. L., and Thornton, M. C., Ultramicroscopy 15, 371 (1984).CrossRefGoogle Scholar