Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-27T01:31:23.389Z Has data issue: false hasContentIssue false

Structural variations and transformation behavior of the Al68Cu11Co21 decagonal phase

Published online by Cambridge University Press:  03 March 2011

B. Grushko
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
R. Wittmann
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
K. Urban
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
Get access

Abstract

The Al68Cu11Co21 decagonal phase was studied after annealing at 1000 °C for 24-760 h by transmission and scanning electron microscopy. The strong superstructure odd-n reflections in the [1,-2, 1, 0, 0] electron diffractograms were stable under annealing up to about 40 h. As a possible origin of the increased intensities of the odd-n reflections the formation of vacancy-ordered structures is discussed. The structure was modified by prolonged annealing. In several annealed samples a dense net of extra reflections overlapping the quasiperiodic reflections was observed. This observation was explained as an indication of the formation of metastable states during cooling. Differently ordered decagonal structures exhibited different transformation kinetics during cooling from high temperatures.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Audier, M. and Robertson, B., Philos. Mag. Lett. 64, 401 (1991).CrossRefGoogle Scholar
2Hiraga, K., Sun, W., and Lincoln, F. J., Jpn. J. Appl. Phys. 30, L302 (1991).CrossRefGoogle Scholar
3Audier, M., Launois, P., Dénoyer, F., Lambert, M., Dong, C., and Dubois, J. M., Microsc. Microanal. Microstruct. 1, 417 (1990).CrossRefGoogle Scholar
4Song, S. and Ryba, E. R., Philos. Mag. Lett. 65, 85 (1992).CrossRefGoogle Scholar
5Grushko, B., Wittmann, R., and Urban, K., Philos. Mag. Lett. 67, 25 (1993).CrossRefGoogle Scholar
6A-P. Tsai, Inoue, A., and Masumoto, T., Mater. Trans. JIM 30, 300 (1989).Google Scholar
7Grushko, B., Philos. Mag. Lett. 66, 151 (1992).CrossRefGoogle Scholar
8Grushko, B., J. Mater. Res. 8, 1473 (1993).CrossRefGoogle Scholar
9Daulton, T. L. and Kelton, K. F., Philos. Mag. Lett. 63, 257 (1991).CrossRefGoogle Scholar
10Grushko, B., Mater. Trans. JIM 34, 116 (1993).CrossRefGoogle Scholar
11He, Y., Chen, H., Poon, S. J., and Shiflet, G., Philos. Mag. Lett. 64, 307 (1991).CrossRefGoogle Scholar
12Grushko, B. and Freiburg, Ch., J. Mater. Res. 7, 1100 (1992).CrossRefGoogle Scholar
13Grushko, B. and Urban, K., Philos. Mag. B (1994, in press).Google Scholar
14Grushko, B., Wittmann, R., and Urban, K., J. Mater. Res. 7, 2713 (1992).CrossRefGoogle Scholar
15Grushko, B., Ann. Physik 2, 602 (1993).CrossRefGoogle Scholar
16Kek, S. and Mayer, J., Z. Kristallogr. 205, 235 (1993).Google Scholar
17R. Würschum, Grushko, B., Urban, K., and Schaefer, H-E., Philos. Mag. B (1994, in press).Google Scholar
18Chattopadhyay, K., Lele, S., Thangaraj, N., and Ranganathan, S., Acta Metall. 35, 727 (1987).CrossRefGoogle Scholar
19J. Reyes-Gasga, Lara, A., Riveros, H., and José-Yacamán, M., Mater. Sci. Eng. A150, 87 (1992).Google Scholar
20Garifalco, L. A., Statistical Physics of Materials (John Wiley, New York, 1973), p. 287.Google Scholar