Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-10T04:27:33.267Z Has data issue: false hasContentIssue false

Structural transitions and electrical conductivity of C60 films at high temperature

Published online by Cambridge University Press:  31 January 2011

Jinlong Gong
Affiliation:
Department of Physics, Lanzhou University, Lanzhou 730000, People's Republic of China
Guobin Ma
Affiliation:
Department of Physics, Lanzhou University, Lanzhou 730000, People's Republic of China
Guanghua Chen
Affiliation:
Department of Physics, Lanzhou University, Lanzhou 730000, People's Republic of China
Get access

Abstract

X-ray diffraction analysis on C60 films shows that besides fcc phase, there also exists hcp phase, as well as a new crystalline phase with interplanar spacing (d-spacing) of planes parallel to the substrate 0.95 nm. The new phase may relate to the intercrystalline packed C60 molecules between fcc crystallites. The room temperature electrical conductivity of C60 films is found to be in the range of 10−5–10−8 (Ω · cm)−1. The room temperature conductivities of C60 films annealed at temperatures above 473 K are lower by one order of magnitude than those at temperatures below 463 K. This is because the interconnection between the fcc crystallites is weakened due to the disappearance of the new intercrystalline phase and the subsequent heightening of the intercrystalline potential barrier. From the measurement on the conductivity versus time when the film is maintained at a constant temperature, we identified the increase of conductivity is the result of the decrease of hcp phase, while the decrease of conductivity is due to the decrease of the new intercrystalline phase. Because the structures of the films become highly ordered, and defect states in the energy band gap decrease on annealing at high temperature, the conductivity activation energy increases.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kroto, H. W., Heath, J. R., O'Brian, S. C., Curl, R. F., and Smalley, R. E., Nature (London) 318, 162 (1985).CrossRefGoogle Scholar
2.Krätschmer, W., Lamb, L. D., Fostiropoulos, K., and Huffman, D. R., Nature (London) 347, 354 (1990).CrossRefGoogle Scholar
3.Dresselhaus, M. S., Dresselhaus, G., and Eklund, P.C., J. Mater. Res. 8, 2054 (1993).CrossRefGoogle Scholar
4.Kelty, S. P., Chen, C. C., and Lieber, C. M., Nature (London) 352, 223 (1991).CrossRefGoogle Scholar
5.Benning, P. J., Martins, J.L., Weaver, J. H., Chibante, L. P. F., and Smalley, R. E., Science 252, 1417 (1991).CrossRefGoogle Scholar
6.Weaver, J. H., Martins, J. L., Komeda, T., Chen, Y., Ohno, T. K., Kroll, G. H., Troullier, N., Hauflen, R. E., and Smalley, R. E., Phys. Rev. Lett. 66, 1741 (1991).CrossRefGoogle Scholar
7.Mort, J., Okumura, K., Machonkin, M., Ziolo, R., Huffman, D. R., and Ferguson, M. I., Chem. Phys. Lett. 186, 281 (1991).CrossRefGoogle Scholar
8.Mort, J., Ziolo, R., Machonkin, M., Huffman, D. R., and Ferguson, M. I., Chem. Phys. Lett. 186, 284 (1991).CrossRefGoogle Scholar
9.Mort, J., Machonkin, M., Ziolo, R., Huffman, D. R., and Ferguson, M. I., Appl. Phys. Lett. 60, 1735 (1992).CrossRefGoogle Scholar
10.Haddon, R. C., Hebard, A. F., Rosseinsky, M. J., Marphy, D. W., Duclos, S. J., Lyons, K. B., Miller, B., Rosamilia, J.M., Fleming, R. M., Kortan, A. R., Glarum, S. H., Makhija, A. V., Muller, A. J., Eick, R. H., Zahurak, S. M., Tycko, R., Dabbagh, G., and Thiel, F. A., Nature (London) 350, 320 (1991).CrossRefGoogle Scholar
11.Hamed, A., Sun, Y.Y., Tao, Y.K., Meng, R.L., and Hor, P.H., Phys. Rev. B 47, 10873 (1993).CrossRefGoogle Scholar
12.Yonehara, H. and Pac, C., Appl. Phys. Lett. 61, 575 (1992).CrossRefGoogle Scholar
13.Wen, C., Li, J., Kitazawa, K., Aida, T., Honma, I., Komiyama, H., and Yamada, K., Appl. Phys. Lett. 61, 2162 (1992).CrossRefGoogle Scholar
14.Kremer, R. K., Rabenau, T., Maser, W. K., Kaiser, M., Simon, A., Haluška, M., and Kuzmany, H., Appl. Phys. A56, 211 (1993).CrossRefGoogle Scholar
15.Aral, T., Murasakami, Y., Suematsu, H., Kikucki, K., Achiba, Y., and Ikemoto, I., Solid State Commun. 84, 827 (1992).Google Scholar
16.Sarkar, D. and Halas, N. J., Appl. Phys. Lett. 63, 2438 (1993).CrossRefGoogle Scholar
17.Hamed, A., Rasmussen, H., and Hor, P.H., Phys. Rev. B 48, 14760 (1993).CrossRefGoogle Scholar
18.Luzzi, D. E., Fischer, J. E., Wang, X. Q., Ricketts-Foot, D. A., McGhie, A. R., and Romonow, W. J., J. Mater. Res. 7, 335 (1992).CrossRefGoogle Scholar
19.Li, Z. G. and Fagan, P. J., Chem. Phys. Lett. 194, 461 (1991).CrossRefGoogle Scholar
20.Li, J. Q., Zhao, Z. X., Gan, Z. Z., and Yin, D. L., Appl. Phys. Lett. 59, 3108 (1991).CrossRefGoogle Scholar
21.Kitamoto, T., Sasaki, S., Atake, T., Tanaka, T., Kawaji, H., Kikucki, K., Saito, K., Suzuki, S., Achiba, Y., and Ikemoto, I., Jpn. J. Appl. Phys. 32, L424 (1993).CrossRefGoogle Scholar
22.Bver, J. L., Smaolen, S., Petricek, V., Dusek, M., Verheijen, M. A., and Meijer, G., Chem. Phys. Lett. 219, 469 (1994).Google Scholar
23.Fleming, R. M., Kortan, A. R., Hessen, B., Siegrist, T., Thiel, F. A., Marsh, P., Haddon, R.C., Tycko, R., Dabbagh, G., Kaplan, M.L., and Mujsec, A. M., Phys. Rev. B 44, 888 (1991).CrossRefGoogle Scholar
24.Pace, M. D., Christidis, T. C., Yin, J. J., and Milliken, J., J. Phys. Chem. 96, 6655 (1992).CrossRefGoogle Scholar