Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T11:30:45.576Z Has data issue: false hasContentIssue false

Structural stability and Raman scattering of InN nanowires under high pressure

Published online by Cambridge University Press:  31 January 2011

L.D. Yao
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
S.D. Luo
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
X. Shen
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
S.J. You
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
L.X. Yang
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
S.J. Zhang
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
S. Jiang
Affiliation:
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039, People's Republic of China
Y.C. Li
Affiliation:
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039, People's Republic of China
J. Liu
Affiliation:
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039, People's Republic of China
K. Zhu
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
Y.L. Liu
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
W.Y. Zhou
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
L.C. Chen
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
C.Q. Jin
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
R.C. Yu*
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
S.S. Xie
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

High-pressure in situ angular dispersive x-ray diffraction study on the wurtzite-type InN nanowires has been carried out by means of the image-plate technique and diamond-anvil cell (DAC) up to about 31.8 GPa. The pressure-induced structural transition from the wurtzite to a rocksalt-type phase occurs at about 14.6 GPa, which is slightly higher than the transition pressure of InN bulk materials (∼12.1 GPa). The relative volume reduction at the transition point is close to 17.88%, and the bulk modulus B0 is determined through fitting the relative volume-pressure experimental data related to the wurtzite and rocksalt phases to the Birch–Murnaghan equation of states. Moreover, high-pressure Raman scattering for InN nanowires were also investigated in DAC at room temperature. The corresponding structural transition was confirmed by assignment of phonon modes. We calculated the mode Grüneisen parameters for the wurtzite and rocksalt phases of InN nanowires.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nakamura, S.: III–V nitride based light-emitting devices. Solid State Commun. 102, 237 (1997)CrossRefGoogle Scholar
2.Orton, J.W., Foxon, C.T.: Group III nitride semiconductors for short wavelength light-emitting devices. Rep. Prog. Phys. 61, 1 (1998)CrossRefGoogle Scholar
3.Jain, S.C., Willander, M., Narayan, J., Overstraeten, R.V.: III-nitrides: Growth, characterization, and properties. J. Appl. Phys. 87, 965 (2000)CrossRefGoogle Scholar
4.Haase, M.A., Qiu, J., Depuydt, J.M., Cheng, H.: Blue-green laser diodes. Appl. Phys. Lett. 59, 1272 (1991)CrossRefGoogle Scholar
5.Jeon, H., Ding, J., Nurmikko, A.V., Xie, W., Grillo, D.C., Kobayashi, M., Gunshor, R.L.: Blue-green injection laser diodes in (Zn,Cd)Se/ZnSe quantum wells. Appl. Phys. Lett. 59, 3619 (1991)CrossRefGoogle Scholar
6.Gaines, J., Drenten, R., Haberen, K.W., Marshall, T., Mensz, P.M., Petruzzello, J.: Blue-green injection lasers containing pseudomorphic Zn1−xMgxSySe1−y cladding layers and operating up to 394 K. Appl. Phys. Lett. 62, 2462 (1993)CrossRefGoogle Scholar
7.O'Leary, S.K., Foutz, B.E., Shur, M.S., Bhapkar, U.V., Eastman, L.F.: Electron transport in wurtzite indium nitride. J. Appl. Phys. 83, 826 (1998)CrossRefGoogle Scholar
8.Foutz, B.E., O'Leafy, S.K., Shur, M.S., Eastman, L.F.: Transient electron transport in wurtzite GaN, InN, and AlN. J. Appl. Phys. 85, 7727 (1999)CrossRefGoogle Scholar
9.Chen, J., Cheng, G., Stern, E., Reed, M.A., Avouris, Ph.: Electrically-excited infrared emission from InN transistors. Nano Lett. 7, 2276 (2007)CrossRefGoogle ScholarPubMed
10.Ueno, M., Yoshida, M., Onodera, A., Shimomura, O., Takemura, K.: Stability of the wurtzite-type structure under high pressure: GaN and InN. Phys. Rev. B 49, 14 (1994)CrossRefGoogle ScholarPubMed
11.Pinquier, C., Demangeot, F., Frandon, J., Pomeroy, J.W., Kuball, M., Hubel, H., van Uden, N.W.A., Dunstan, D.J., Briot, O., Maleyre, B., Ruffenach, S., Gil, B.: Raman scattering in hexagonal InN under high pressure. Phys. Rev. B 70, 113202 (2004)CrossRefGoogle Scholar
12.Pinquier, C., Demangeot, F., Frandon, J., Chervin, J-C., Polian, A., Couzinet, B., Munsch, P., Briot, O., Ruffenach, S., Gil, B., Maleyre, B.: Raman scattering study of wurtzite and rocksalt InN under high pressure. Phys. Rev. B 73, 115211 (2006)CrossRefGoogle Scholar
13.Davydov, V.Yu., Emtsev, V.V., Goncharuk, I.N., Smirnov, A.N., Petrikov, V.D., Mamutin, V.V., Vekshin, V.A., Ivanov, S.V., Smirnov, M.B., Inushima, T.: Experimental and theoretical studies of phonons in hexagonal InN. Appl. Phys. Lett. 75, 3297 (1999)CrossRefGoogle Scholar
14.Sarasamak, K., Kulkarni, A.J., Zhou, M., Limpijumnong, S.: Stability of wurtzite, unbuckled wurtzite, and rocksalt phases of SiC, GaN, InN, ZnO, and CdSe under loading of different triaxialities. Phys. Rev. B 77, 024104 (2008)CrossRefGoogle Scholar
15.Bhuiyan, A., Hashimoto, A., Yamamoto, A.: Indium nitride (InN): A review on growth, characterization, and properties. J. Appl. Phys. 94, 2779 (2003)CrossRefGoogle Scholar
16.Wu, J., Walukiewicz, W., Yu, K.M., Auger, W.J. III, Haller, E.E., Lu, H., Schaff, W.J., Saito, Y., Nanishi, Y.: Unusual properties of the fundamental band gap of InN. Appl. Phys. Lett. 80, 3967 (2002)CrossRefGoogle Scholar
17.Shubina, T.V., Ivanov, S.V., Jmerik, V.N., Solnyshkov, D.D., Vekshin, V.A., Kop'ev, P.S., Vasson, A., Leymarie, J., Kavokin, A., Amano, H., Shimono, K., Kasic, A., Monemar, B.: Mie resonances, infrared emission, and the band gap of InN. Phys. Rev. Lett. 92, 117407 (2004)CrossRefGoogle ScholarPubMed
18.Nanishi, Y., Saito, Y., Yamaguchi, T.: RF-molecular-beam-epitaxy growth and properties of InN and related alloys. Jpn. J. Appl. Phys. 42, 2549 (2003)CrossRefGoogle Scholar
19.Luo, S.D., Zhou, W.Y., Zhang, Z.X., Liu, L.F., Dou, X.Y., Wang, J.X., Zhao, X.W., Liu, D.F., Gao, Y., Song, L., Xiang, Y.J., Zhou, J.J., Xie, S.S.: Synthesis of long indium nitride nanowires with uniform diameters in large quantities. Small 1, 1004 (2005)CrossRefGoogle ScholarPubMed
20.Luo, S.D., Zhou, W.Y., Zhang, Z.X., Dou, X.Y., Liu, L.F., Zhao, X.W., Liu, D.F., Song, L., Xiang, Y.J., Zhou, J.J., Xie, S.S.: Bulk-quantity synthesis of single-crystalline indium nitride nanobelts. Chem. Phys. Lett. 411, 361 (2005)CrossRefGoogle Scholar
21.Luo, S.D., Yao, L.D., Chu, W.G., Shen, J., Zhang, Z.X., Li, J.B., Yi, J.H., Yu, R.C., Zhou, W.Y., Xie, S.S.: InN/In2O3 peapod nanostructures and conformal conversion templated from InN counterparts via thermal oxidation. Nanotechnology 18, 235605 (2007)CrossRefGoogle Scholar
22.Uehara, S., Masamoto, T., Onodera, A., Ueno, M., Shimomura, O., Takemura, K.: Equation of state of the rocksalt phase of III–V nitrides to 72 GPa or higher. J. Phys. Chem. Solids 58, 2093 (1997)CrossRefGoogle Scholar
23.Arguello, C.A., Rousseau, D.L., Porto, S.P.S.: First-order Raman effect in wurtzite-type crystals. Phys. Rev. 181, 1351 (1969)CrossRefGoogle Scholar
24.Halsall, M.P., Harmer, P., Parbrook, P.J., Henley, S.J.: Raman scattering and absorption study of the high-pressure wurtzite to rocksalt phase transition of GaN. Phys. Rev. B 69, 235207 (2004)CrossRefGoogle Scholar
25.Kaczmarczyk, G., Kaschner, A., Reich, S., Hoffmann, A., Thomsen, C., As, D.J., Lima, A.P., Schikora, D., Lischka, K., Averbeck, R., Riechert, H.: Lattice dynamics of hexagonal and cubic InN: Raman-scattering experiments and calculations. Appl. Phys. Lett. 76, 2122 (2000)CrossRefGoogle Scholar
26.Blackman, M.: On the thermal expansion of solids. Proc. Phys. Soc. London, Sect. B 70, 827 (1957)CrossRefGoogle Scholar
27.Daniels, W.B.: Lattice Dynamics R.F. Wallis (Pergamon Press, Oxford 1965)273 CrossRefGoogle Scholar