Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T12:05:08.812Z Has data issue: false hasContentIssue false

Structural origin of the high glass-forming ability in Y-doped bulk metallic glasses

Published online by Cambridge University Press:  31 January 2011

Gu-Qing Guo
Affiliation:
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
Guo-Qing Zhang
Affiliation:
Key Laboratory of Advanced Textile Materials and Manufacturing Technology (Zhejiang Sci-Tech University), Ministry of Education, Hangzhou 310018, People's Republic of China
Lian-Yi Chen*
Affiliation:
International Center for New-Structured Materials (ICNSM), Zhejiang University, Hangzhou 310027, People's Republic China; and Laboratory of New-Structured Materials, Department of Materials Science and Engineering; Department of Physics, Zhejiang University, Hangzhou 310027, People's Republic of China
*
b)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Structural origin of the high glass-forming ability (GFA) in multicomponent bulk metallic glasses (BMGs) caused by minor alloying was investigated using state-of-the-art synchrotron radiation techniques. It is found that a two-shell icosahedral cluster with one Y center is the basic structural unit in the representative Cu46Zr42Al7Y5 BMG, which may be densely packed with the help of shared and glue atoms, leading to enhanced ordering at short and medium range. This cluster dense packing may play a key role in achieving the high GFA in CuZrAlY alloy, which also explains the strong dependence of GFA on Y content observed in many experiments. The present work may be extended to a series of multicomponent amorphous alloys, the formation of which is strongly dependent on minor alloying.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Wang, W.H., Dong, C., Shek, C.H.Bulk metallic glasses. Mater. Sci. Eng., R 44, 45 (2004)Google Scholar
2.Das, J., Tang, M.B., Kim, K.B., Theissmann, R., Baier, F., Wang, W.H., Eckert, J.“Work-hardenable” ductile bulk metallic glass. Phys. Rev. Lett. 94, 205501 (2005)Google Scholar
3.Chen, L.Y., Fu, Z.D., Zhang, G.Q., Hao, X.P., Jiang, Q.K., Wang, X.D., Cao, Q.P., Franz, H., Liu, Y.G., Xie, H.S., Zhang, S.L., Wang, B.Y., Zeng, Y.W., Jiang, J.Z.New class of plastic bulk metallic glass. Phys. Rev. Lett. 100, 075501 (2008)CrossRefGoogle Scholar
4.Chen, L.Y., Ge, Q., Qu, S., Jiang, Q.K., Nie, X.P., Jiang, J.Z.Achieving large macroscopic compressive plastic deformation and work-hardening-like behavior in a monolithic bulk metallic glass by tailoring stress distribution. Appl. Phys. Lett. 92, 211905 (2008)Google Scholar
5.Chen, L.Y., Hu, H.T., Zhang, G.Q., Jiang, J.Z.Catching the Ni-based ternary metallic glasses with critical diameter up to 3 mm in Ni–Nb–Zr system. J. Alloys Compd. 443, 109 (2007)Google Scholar
6.Lu, Z.P., Liu, C.T., Porter, W.D.Role of yttrium in glass formation of Fe-based bulk metallic glasses. Appl. Phys. Lett. 83, 2581 (2003)CrossRefGoogle Scholar
7.Yim, H.C., Xu, D.H., Johnson, W.L.Ni-based bulk metallic glass formation in the Ni–Nb–Sn and Ni–Nb–Sn–X (X = B,Fe,Cu) alloy systems. Appl. Phys. Lett. 82, 1030 (2003)Google Scholar
8.Inoue, A., Zhang, W., Zhang, T., Kurosaka, K.Thermal and mechanical properties of Cu-based Cu–Zr–Ti bulk glassy alloys. Mater. Trans. 42, 1149 (2001)Google Scholar
9.Zhang, Q.S., Zhang, W., Inoue, A.New Cu–Zr-based bulk metallic glasses with large diameters of up to 1.5 cm. Scr. Mater. 55, 711 (2006)Google Scholar
10.Zhang, G.Q., Jiang, Q.K., Chen, L.Y., Shao, M., Liu, J.F., Jiang, J.Z.Synthesis of centimeter-size Ag-doped Zr–Cu–Al metallic glasses with large plasticity. J. Alloys Compd. 424, 176 (2006)CrossRefGoogle Scholar
11.Dai, C.L., Guo, H., Shen, Y., Li, Y., Ma, E., Xu, J.A new centimeter-diameter Cu-based bulk metallic glass. Scr. Mater. 54, 1403 (2006)Google Scholar
12.Yu, P., Bai, H.Y., Wang, W.H.Superior glass-forming ability of CuZr alloys from minor additions. J. Mater. Res. 21, 1674 (2006)CrossRefGoogle Scholar
13.Xu, X., Chen, L.Y., Zhang, G.Q., Wang, N., Jiang, J.Z.Formation of bulk metallic glasses in Cu45Zr48xAl7REx (RE = La, Ce, Nd, Gd 0 ≤ x ≤ 5 at.%). Intermetallics 15, 1066 (2007)Google Scholar
14.Xu, D.H., Duan, G., Johnson, W.L.Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper. Phys. Rev. Lett. 92, 245504 (2004)Google Scholar
15.Shen, Y., Ma, E., Xu, J.A group of Cu(Zr)-based BMGs with critical diameter in the range of 12 to 18 mm. J. Mater. Sci. Technol. 24, 149 (2008)Google Scholar
16.Yan, M., Shen, J., Zhang, T., Zhou, J.Enhanced glass-forming ability of a Zr-based bulk metallic glass with yttrium doping. J. Non-Cryst. Solids 352, 3109 (2006)CrossRefGoogle Scholar
17.Sordelet, D.J., Yang, X.Y., Rozhkova, E.A., Besser, M.F., Kramer, M.J.Oxygen-stabilized glass formation in Zr80Pt20 melt-spun ribbons. Appl. Phys. Lett. 83, 69 (2003)CrossRefGoogle Scholar
18.Yang, X.Y., Ye, Y.Y., Kramer, M.J., Sordelet, D.J.Influence of oxygen on the structure and devitrification pathways in Zr66.7Ni33.3 and Zr66.7Cu33.3 amorphous systems. J. Alloys Compd. 484, 914 (2009)Google Scholar
19.Xi, X.K., Sandor, M.T., Liu, Y.H., Wang, W.H., Wu, Y.Structural changes induced by microalloying in Cu46Zr47−xAl7Gdx metallic glasses. Scr. Mater. 61, 967 (2009)CrossRefGoogle Scholar
20.Wang, W.H.Roles of minor additions in formation and properties of bulk metallic glasses. Prog. Mater. Sci. 52, 540 (2007)Google Scholar
21.Yang, L., Xia, J.H., Wang, Q., Dong, C., Chen, L.Y., Ou, X., Liu, J.F., Jiang, J.Z., Klementiev, K., Saksl, K., Franz, H., Schneider, J.R., Gerward, L.Design of Cu8Zr5-based bulk metallic glasses. Appl. Phys. Lett. 88, 241913 (2006)Google Scholar
22.Hammersley, A.P., Svensson, S.O., Hanfland, M., Fitch, A.N., Häusermann, D.Two-dimensional detector software: From real detector to idealised image or two-theta scan. High Pressure Res. 14, 235 (1996)Google Scholar
23.Yang, L., Yin, S., Wang, X.D., Cao, Q.P., Jiang, J.Z., Saksl, K., Franz, H.Atomic structure in Zr70Ni30 metallic glass. J. Appl. Phys. 102, 083512 (2007)CrossRefGoogle Scholar
24.Felderhoff, M., Klementiev, K., Grunert, W., Spliethoff, B., Tesche, B., Bellosta Von Colbe, J.M., Bogdanovic, B., Hartel, M., Pommerin, A., Schuth, F., Weidenthaler, C.Combined TEM-EDX and XAFS studies of Ti-doped sodium alanate. Phys. Chem. Chem. Phys. 6, 4369 (2004)CrossRefGoogle Scholar
25.Klementev, K.V.Extraction of the fine structure from x-ray absorption spectra. J. Phys. D: Appl. Phys. 34, 209 (2001)CrossRefGoogle Scholar
26.McGreevy, R.L., Pusztai, L.Reverse Monte Carlo simulation: A new technique for the determination of disordered structures. Mol. Simul. 1, 359 (1988)CrossRefGoogle Scholar
27.Wicks, J.D., Börjesson, L., Bushnell-Wye, G., Howells, W.S., McGreevy, R.L.Structure and ionic conduction in (AgI)x(AgPO3)1−x glasses. Phys. Rev. Lett. 74, 726 (1995)CrossRefGoogle Scholar
28.McGreevy, R.L.Reverse Monte Carlo modelling. J. Phys. Condens. Matter 13, R877 (2001)CrossRefGoogle Scholar
29.Sheng, H.W., Luo, W.K., Alamgir, F.M., Bai, J.M., Ma, E.Atomic packing and short-to-medium range order in metallic glasses. Nature 439, 419 (2006)Google Scholar
30.Yang, L., Jiang, J.Z., Liu, T., Hu, T.D., Uruga, T.Atomic structure in Zr70Cu29Pd1 metallic glass. Appl. Phys. Lett. 87, 061918 (2005)Google Scholar
31.Miracle, D.B.The efficient cluster packing model—An atomic structural model for metallic glasses. Acta Mater 54, 4317 (2006)Google Scholar
32.Liu, B.X., Zhang, Z.J., Jin, O.A comparative study of metastable alloy formation by ion mixing and thermal annealing of multilayers in the immiscible Y–Zr system. J. Alloys Compd. 270, 186 (1998)CrossRefGoogle Scholar
33.Saida, J., Matsushita, M., Inoue, A.Direct observation of icosahedral cluster in Zr70Pd30 binary glassy alloy. Appl. Phys. Lett. 79, 412 (2001)Google Scholar
34.Saksl, K., Franz, H., Jóvári, P., Klementiev, K., Welter, E., Ehnes, A., Saida, J., Inoue, A., Jiang, J.Z.Evidence of icosahedral short-range order in Zr70Cu30 and Zr70Cu29Pd1 metallic glasses. Appl. Phys. Lett. 83, 3924 (2003)Google Scholar
35.Luo, W.K., Sheng, H.W., Alamgir, F.M., Bai, J.M., He, J.H., Ma, E.Icosahedral short-range order in amorphous alloys. Phys. Rev. Lett. 92, 145502 (2004)Google Scholar
36.Doye, J.P.K., Wales, D.J.Polytetrahedral clusters. Phys. Rev. Lett. 86, 5719 (2001)Google Scholar
37.Kuo, K.H.Mackay, anti-Mackay, double-Mackay, pseudo-Mackay, and related icosahedral shell clusters. Struct. Chem. 13, 221 (2002)CrossRefGoogle Scholar
38.Ankudinov, A.L., Ravel, B., Rehr, J.J., Conradson, S.D.Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure. Phys. Rev. B 58, 7565 (1998)CrossRefGoogle Scholar
39.Durham, P.J.Theory of XANESX-Ray Absorption Principles, Applications, Techniques of EXAFS, SEXAFS and XANES edited by D.C. Koningsberger and R. Prins (John Wiley & Sons, Inc., New York 1988)12Google Scholar
40.Evrard, G., Pusztai, L.Reverse Monte Carlo modelling of the structure of disordered materials with RMC++: A new implementation of the algorithm in C++. J. Phys. Condens. Matter 17, S1 (2005)Google Scholar
41.Dyre, J.C.Glasses-heirs of liquid treasures. Nat. Mater. 3, 749 (2004)CrossRefGoogle ScholarPubMed
42.Xia, J.H., Qiang, J.B., Wang, Y.M., Wang, Q., Dong, C.Ternary bulk metallic glasses formed by minor alloying of Cu8Zr5 icosahedron. Appl. Phys. Lett. 88, 101907 (2006)CrossRefGoogle Scholar
43.Zhang, J., Tan, H., Feng, Y.P., Li, Y.The effect of Y on glass forming ability. Scr. Mater. 53, 183 (2005)CrossRefGoogle Scholar