Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-10T18:28:30.824Z Has data issue: false hasContentIssue false

Structural origin of the different glass-forming abilities in ZrCu and ZrNi metallic glasses

Published online by Cambridge University Press:  29 July 2011

Gu-Qing Guo
Affiliation:
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People’s Republic of China
Liang Yang*
Affiliation:
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People’s Republic of China
Cai-Long Huang
Affiliation:
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People’s Republic of China
Da Chen
Affiliation:
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People’s Republic of China
Lian-Yi Chen*
Affiliation:
International Center for New-Structured Materials, Zhejiang University, Hangzhou 310027, People’s Republic of China; and Laboratory of New-Structured Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China; and Department of Physics, Zhejiang University, Hangzhou 310027, People’s Republic of China
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

The microstructures of Zr70Cu30 and Zr70Ni30 metallic glasses (MGs) were investigated via the synchrotron radiation techniques combined with the reverse Monte-Carlo simulations. Although Cu and Ni are neighbor elements in the periodic table and their atomic radii are almost the same in length, it is found that atomic- and cluster-scale structural differences occur between these two Zr-based MGs. In particular, the relatively regular clusters caused by the narrow distributions of atomic separations and bond angles are detected in Zr70Cu30. This is the structural origin of the different glass-forming abilities in ZrCu and ZrNi alloys. This work has implications for understanding of the glass-forming mechanism in this class of glassy materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Finney, J.L.: Modelling the structures of amorphous metals and alloys. Nature 266, 309 (1977).CrossRefGoogle Scholar
2.Doye, J.P.K. and Wales, D.J.: The structure and stability of atomic liquids: From clusters to bulk. Science 271, 484 (1996).CrossRefGoogle Scholar
3.Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).CrossRefGoogle Scholar
4.Miracle, D.B.: A structural model for metallic glasses. Nat. Mater. 3, 697 (2004).CrossRefGoogle ScholarPubMed
5.Sheng, H.W., Luo, W.K., Alamgir, F.M., Bai, J.M., and Ma, E.: Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419 (2006).CrossRefGoogle ScholarPubMed
6.Yavari, A.R.: Materials science – A new order for metallic glasses. Nature 439, 405 (2006).CrossRefGoogle ScholarPubMed
7.Li, Y., Guo, Q., Kalb, J.A., and Thompson, C.V.: Matching glass-forming ability with the density of the amorphous phase. Science 322, 1816 (2008).CrossRefGoogle ScholarPubMed
8.Georgarakis, K., Yavari, A.R., Louzguine-Luzgin, D.V., Antonowicz, J., Stoica, M., Li, Y., Satta, M., LeMoulec, A., Vaughan, G., and Inoue, A.: Atomic structure of Zr-Cu glassy alloys and detection of deviations from ideal solution behavior with Al addition by x-ray diffraction using synchrotron light in transmission. Appl. Phys. Lett. 94, 3 (2009).CrossRefGoogle Scholar
9.Peng, H.L., Li, M.Z., Wang, W.H., Wang, C.Z., and Ho, K.M.: Effect of local structures and atomic packing on glass forming ability in CuxZr100-x metallic glasses. Appl. Phys. Lett. 96, 3 (2010).CrossRefGoogle Scholar
10.Liu, X.J., Chen, G.L., Hui, X., Liu, T., and Lu, Z.P.: Ordered clusters and free volume in a Zr-Ni metallic glass. Appl. Phys. Lett. 93, 3 (2008).Google Scholar
11.Huang, L., Wang, C.Z., Hao, S.G., Kramer, M.J., and Ho, K.M.: Short- and medium-range order in amorphous Zr2Ni metallic alloy. Phys. Rev. B 81, 6 (2010).CrossRefGoogle Scholar
12.Buschow, K.H.J. and Beekmans, N.M.: Thermal stability and electronic properties of amorphous Zr-Co and Zr-Ni alloys. Phys. Rev. B 19, 3843 (1979).CrossRefGoogle Scholar
13.Miracle, D.B., Louzguine-Luzgin, D.V., Louzguina-Luzgina, L.V., and Inoue, A.: An assessment of binary metallic glasses: Correlations between structure, glass forming ability and stability. Int. Mater. Rev. 55, 218 (2010).CrossRefGoogle Scholar
14.Yang, L., Yin, S., Wang, X.D., Cao, Q.P., Jiang, J.Z., Saksl, K., and Franz, H.: Atomic structure in Zr70Ni30 metallic glass. J. Appl. Phys. 102, 5 (2007).CrossRefGoogle Scholar
15.Georgarakis, K., Yavari, A.R., Aljerf, M., Louzguine-Luzgin, D.V., Stoica, M., Vaughan, G., and Inoue, A.: On the atomic structure of Zr-Ni and Zr-Ni-Al metallic glasses. J. Appl. Phys. 108, 7 (2010).CrossRefGoogle Scholar
16.Saida, J., Kasai, M., Matsubara, E., and Inoue, A.: Stability of glassy state in Zr-based glassy alloys correlated with nano icosahedral phase formation. Ann. Chim. Sci. Mat. 27, 77 (2002).CrossRefGoogle Scholar
17.Inoue, A., Zhang, T., and Masumoto, T.: Glass-forming ability of alloys. J. Non-Cryst. Solids 156, 473 (1993).CrossRefGoogle Scholar
18.Xu, D.H., Lohwongwatana, B., Duan, G., Johnson, W.L., and Garland, C.: Bulk metallic glass formation in binary Cu-rich alloy series – Cu100-xZrx (x=34, 36 38.2, 40 at.%) and mechanical properties of bulk Cu64Zr36 glass. Acta Mater. 52, 2621 (2004).CrossRefGoogle Scholar
19.Wang, D., Li, Y., Sun, B.B., Sui, M.L., Lu, K., and Ma, E.: Bulk metallic glass formation in the binary Cu-Zr system. Appl. Phys. Lett. 84, 4029 (2004).CrossRefGoogle Scholar
20.Yang, L., Guo, G.Q., Chen, L.Y., Wei, S.H., Jiang, J.Z., and Wang, X.D.: Atomic structure in Al-doped multicomponent bulk metallic glass. Scr. Mater. 63, 879 (2010).CrossRefGoogle Scholar
21.Yang, L., Xia, J.H., Wang, Q., Dong, C., Chen, L.Y., Ou, X., Liu, J.F., Jiang, J.Z., Klementiev, K., Saksl, K., Franz, H., Schneider, J.R., and Gerward, L.: Design of Cu8Zr5-based bulk metallic glasses. Appl. Phys. Lett. 88, 3 (2006).CrossRefGoogle Scholar
22.Yang, L., Guo, G.Q., Zhang, G.Q., and Chen, L.Y.: Structural origin of the high glass-forming ability in Y-doped bulk metallic glasses. J. Mater. Res. 25, 1701 (2010).CrossRefGoogle Scholar
23.Cheng, Y.Q. and Ma, E.: Atomic-level structure and structure-property relationship in metallic glasses. Prog. Mater. Sci. 56, 379 (2011).CrossRefGoogle Scholar
24.Ma, D., Stoica, A.D., Wang, X-L., Lu, Z.P., Xu, M., and Kramer, M.: Efficient local atomic packing in metallic glasses and its correlation with glass-forming ability. Phys. Rev. B 80, 014202 (2009).CrossRefGoogle Scholar
25.Yang, L. and Guo, G.Q.: Preferred clusters in metallic glasses. Chin. Phys. B 19, 126101 (2010).CrossRefGoogle Scholar
26.Xi, X.K., Li, L.L., Zhang, B., Wang, W.H., and Wu, Y.: Correlation of atomic cluster symmetry and glass-forming ability of metallic glass. Phys. Rev. Lett. 99, 4 (2007).CrossRefGoogle ScholarPubMed
27.Xi, X.K., Sandor, M.T., Liu, Y.H., Wang, W.H., and Wu, Y.: Structural changes induced by microalloying in Cu46Zr47-xAl7Gdx metallic glasses. Scr. Mater. 61, 967 (2009).CrossRefGoogle Scholar
28.Sha, Z.D., Feng, Y.P., and Li, Y.: Statistical composition-structure-property correlation and glass-forming ability based on the full icosahedra in Cu-Zr metallic glasses. Appl. Phys. Lett. 96, 3 (2010).CrossRefGoogle Scholar