Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T11:48:47.430Z Has data issue: false hasContentIssue false

A structural, morphological, linear, and nonlinear optical spectroscopic studies of nanostructured Al-doped ZnO thin films: An effect of Al concentrations

Published online by Cambridge University Press:  18 February 2019

Mohd Arif
Affiliation:
Advanced Electronic & Nanomaterials Laboratory, Department of Physics, Jamia Millia Islamia, New Delhi 110025, India
Mohd Shkir*
Affiliation:
Advanced Functional Materials and Optoelectronic Laboratory (AFMOL), Department of Physics, College of Science, King Khalid University, Abha 61413, Saudi Arabia
Salem AlFaify
Affiliation:
Advanced Functional Materials and Optoelectronic Laboratory (AFMOL), Department of Physics, College of Science, King Khalid University, Abha 61413, Saudi Arabia
Vanga Ganesh
Affiliation:
Advanced Functional Materials and Optoelectronic Laboratory (AFMOL), Department of Physics, College of Science, King Khalid University, Abha 61413, Saudi Arabia
Amit Sanger
Affiliation:
School of Materials Science, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
Hamed Algarni
Affiliation:
Advanced Functional Materials and Optoelectronic Laboratory (AFMOL), Department of Physics, College of Science, King Khalid University, Abha 61413, Saudi Arabia
Paula M. Vilarinho
Affiliation:
Department of Materials and Ceramic Engineering, University of Aveiro, Aveiro 3810-193, Portugal
Arun Singh*
Affiliation:
Advanced Electronic & Nanomaterials Laboratory, Department of Physics, Jamia Millia Islamia, New Delhi 110025, India
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Sol–gel spin coating is applied to fabricate the pure and different concentrations of aluminum (Al)-doped ZnO films on high-quality silicon substrates. All films are showing high crystallinity in X-ray diffraction study, and lattice constants were obtained using PowderX software. The value of crystallite size was found in range of 20–40 nm. EDX/SEM mapping was performed for 2 wt% Al-doped ZnO film, which shows the presence of Al and its homogeneous distribution in the film. SEM investigation shows nanorods morphology all over the surface of films, and the dimension of nanorods is found to increase with Al doping. The E(g)dire. values were estimate in range of 3.25–3.29 eV for all films. Linear refractive index was found in range of 1.5–2.75. The χ1 value is found in range of 0.13–1.4 for all films. The χ3 values are found in range of 0.0053 × 10−10 to 6.24 × 10−10 esu for pure and doped films. The n2 values were also estimated. These studies clearly showed that the properties of ZnO have been enriched by Al doping, and hence doped films are more appropriate for optoelectronic applications.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

El Hallani, G., Nasih, S., Fazouan, N., Liba, A., Khuili, M., Sajieddine, M., Mabrouki, M., Laanab, L., and Atmani, E.: Comparative study for highly Al and Mg doped ZnO thin films elaborated by sol gel method for photovoltaic application. J. Appl. Phys. 121, 135103 (2017).CrossRefGoogle Scholar
Lee, S-H., Han, S-H., Jung, H.S., Shin, H., Lee, J., Noh, J-H., Lee, S., Cho, I-S., Lee, J-K., and Kim, J.: Al-doped ZnO thin film: A new transparent conducting layer for ZnO nanowire-based dye-sensitized solar cells. J. Phys. Chem. C 114, 7185 (2010).CrossRefGoogle Scholar
Gupta, B., Jain, A., and Mehra, R.: Development and characterization of sol–gel derived Al doped ZnO/p-Si photodiode. J. Mater. Sci. Technol. 26, 223 (2010).CrossRefGoogle Scholar
Ghosh, J., Ghosh, R., and Giri, P.: Tuning the visible photoluminescence in Al doped ZnO thin film and its application in label-free glucose detection. Sens. Actuators, B 254, 681 (2018).CrossRefGoogle Scholar
Gupta, A. and Compaan, A.D.: All-sputtered 14% CdS∕ CdTe thin-film solar cell with ZnO: Al transparent conducting oxide. Appl. Phys. Lett. 85, 684 (2004).CrossRefGoogle Scholar
Gupta, V. and Mansingh, A.: Influence of postdeposition annealing on the structural and optical properties of sputtered zinc oxide film. J. Appl. Phys. 80, 1063 (1996).CrossRefGoogle Scholar
Khan, Z.R., Arif, M., and Singh, A.: Development and study of the structural and optical properties of hexagonal ZnO nanocrystals. Int. Nano Lett. 2, 22 (2012).CrossRefGoogle Scholar
Cui, J.: Zinc oxide nanowires. Mater. Charact. 64, 43 (2012).CrossRefGoogle Scholar
Fan, J., Li, T., and Heng, H.: Hydrothermal growth and optical properties of ZnO nanoflowers. Mater. Res. Express 1, 045024 (2014).CrossRefGoogle Scholar
Vempati, S., Mitra, J., and Dawson, P.: One-step synthesis of ZnO nanosheets: A blue-white fluorophore. Nanoscale Res. Lett. 7, 470 (2012).CrossRefGoogle ScholarPubMed
Zawadzka, A., Płóciennik, P., El Kouari, Y., Bougharraf, H., and Sahraoui, B.: Linear and nonlinear optical properties of ZnO thin films deposited by pulsed laser deposition. J. Lumin. 169, 483 (2016).CrossRefGoogle Scholar
Shkir, M., Arif, M., Ganesh, V., Manthrammel, M.A., Singh, A., Maidur, S.R., Patil, P.S., Yahia, I.S., Algarni, H., and AlFaify, S.: Linear, third order nonlinear and optical limiting studies on MZO/FTO thin film system fabricated by spin coating technique for electro-optic applications. J. Mater. Res. 33, 38803889 (2018).CrossRefGoogle Scholar
Ganesh, V., Yahia, I., AlFaify, S., and Shkir, M.: Sn-doped ZnO nanocrystalline thin films with enhanced linear and nonlinear optical properties for optoelectronic applications. J. Phys. Chem. Solids 100, 115 (2017).CrossRefGoogle Scholar
Benramache, S., Arif, A., Belahssen, O., and Guettaf, A.: Study on the correlation between crystallite size and optical gap energy of doped ZnO thin film. J. Nanostruct. Chem. 3, 80 (2013).CrossRefGoogle Scholar
Ko, H., Chen, Y., Hong, S., Wenisch, H., Yao, T., and Look, D.C.: Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy. Appl. Phys. Lett. 77, 3761 (2000).CrossRefGoogle Scholar
Sharma, P., Gupta, A., Rao, K., Owens, F.J., Sharma, R., Ahuja, R., Guillen, J.O., Johansson, B., and Gehring, G.: Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO. Nat. Mater. 2, 673 (2003).CrossRefGoogle ScholarPubMed
Shkir, M., Arif, M., Ganesh, V., Manthrammel, M.A., Singh, A., Yahia, I.S., Maidur, S.R., Patil, P.S., and AlFaify, S.: Investigation on structural, linear, nonlinear and optical limiting properties of sol–gel derived nanocrystalline Mg doped ZnO thin films for optoelectronic applications. J. Mol. Struct. 1173, 375 (2018).CrossRefGoogle Scholar
Mass, J., Bhattacharya, P., and Katiyar, R.: Effect of high substrate temperature on Al-doped ZnO thin films grown by pulsed laser deposition. Mater. Sci. Eng., B 103, 9 (2003).CrossRefGoogle Scholar
Grinblat, G., Borrero-González, L., Nunes, L.A.d.O., Tirado, M., and Comedi, D.: Enhanced optical properties and (Zn, Mg) interdiffusion in vapour transport grown ZnO/MgO core/shell nanowires. Nanotechnology 25, 035705 (2013).CrossRefGoogle Scholar
Sharma, B.K. and Khare, N.: Stress-dependent band gap shift and quenching of defects in Al-doped ZnO films. J. Phys. D: Appl. Phys. 43, 465402 (2010).CrossRefGoogle Scholar
Shrisha, B., Bhat, S., Kushavah, D., and Naik, K.G.: Hydrothermal growth and characterization of Al-doped ZnO nanorods. Mater. Today 3, 1693 (2016).Google Scholar
Ebrahimizadeh Abrishami, M. and Soleimani Varaki, M.: Novel laser-assisted technique for rapid preparing ZnO: X nanoparticles. J. Laser Appl. 27, 042007 (2015).CrossRefGoogle Scholar
Paraguay D, F., Estrada L, W., Acosta N, D.R., Andrade, E., and Miki-Yoshida, M.: Growth, structure and optical characterization of high quality ZnO thin films obtained by spray pyrolysis. Thin Solid Films 350, 192 (1999).CrossRefGoogle Scholar
Maache, M., Devers, T., and Chala, A.: Al-doped and pure ZnO thin films elaborated by sol–gel spin coating process for optoelectronic applications. Semiconductors 51, 1604 (2017).CrossRefGoogle Scholar
Edison, D.J., Nirmala, W., Kumar, K.D.A., Valanarasu, S., Ganesh, V., Shkir, M., and AlFaify, S.: Structural, optical and nonlinear optical studies of AZO thin film prepared by SILAR method for electro-optic applications. Phys. B 523, 31 (2017).CrossRefGoogle Scholar
Sofiani, Z., Sahraoui, B., Addou, M., Adhiri, R., Lamrani, M.A., Dghoughi, L., Fellahi, N., Derkowska, B., and Bala, W.: Third harmonic generation in undoped and X doped ZnO films (X: Ce, F, Er, Al, Sn) deposited by spray pyrolysis. J. Appl. Phys. 101, 063104 (2007).CrossRefGoogle Scholar
Nagaraja, K., Pramodini, S., Kumar, A.S., Nagaraja, H., Poornesh, P., and Kekuda, D.: Third-order nonlinear optical properties of Mn doped ZnO thin films under cw laser illumination. Opt. Mater. 35, 431 (2013).CrossRefGoogle Scholar
Scherrer, P.: Göttinger nachrichten math. Physics 2, 98 (1918).Google Scholar
Shakir, M., Kushwaha, S., Maurya, K., Bhagavannarayana, G., and Wahab, M.: Characterization of ZnSe nanoparticles synthesized by microwave heating process. Solid State Commun. 149, 2047 (2009).CrossRefGoogle Scholar
Shakir, M., Singh, B., Gaur, R., Kumar, B., Bhagavannarayana, G., and Wahab, M.: Dielectric behaviour and ac electrical conductivity analysis of ZnSe chalcogenide nanoparticles. Chalcogenide Lett. 6, 655 (2009).Google Scholar
Mohd, S., Khan, Z.R., Hamdy, M.S., Algarni, H., and AlFaify, S.: A facile microwave-assisted synthesis of PbMoO 4 nanoparticles and their key characteristics analysis: A good contender for photocatalytic applications. Mater. Res. Express 5, 095032 (2018).Google Scholar
Shkir, M., Yahia, I.S., Ganesh, V., Bitla, Y., Ashraf, I.M., Kaushik, A., and AlFaify, S.: A facile synthesis of Au-nanoparticles decorated PbI2 single crystalline nanosheets for optoelectronic device applications. Sci. Rep. 8, 13806 (2018).CrossRefGoogle ScholarPubMed
Shkir, M. and AlFaify, S.: Tailoring the structural, morphological, optical and dielectric properties of lead iodide through Nd3+ doping. Sci. Rep. 7, 16091 (2017).CrossRefGoogle ScholarPubMed
Yahia, I.S., Shkir, M., AlFaify, S., Ganesh, V., Zahran, H.Y., and Kilany, M.: Facile microwave-assisted synthesis of Te-doped hydroxyapatite nanorods and nanosheets and their characterizations for bone cement applications. Mater. Sci. Eng., C 72, 472 (2017).CrossRefGoogle ScholarPubMed
Shkir, M., Yahia, I.S., Kilany, M., Abutalib, M.M., AlFaify, S., and Darwish, R.: Facile nanorods synthesis of KI:HAp and their structure-morphology, vibrational and bioactivity analyses for biomedical applications. Ceram. Int. 45, 50 (2019).CrossRefGoogle Scholar
Shkir, M., Kilany, M., and Yahia, I.S.: Facile microwave-assisted synthesis of tungsten-doped hydroxyapatite nanorods: A systematic structural, morphological, dielectric, radiation and microbial activity studies. Ceram. Int. 43, 14923 (2017).CrossRefGoogle Scholar
Wei, X., Man, B., Liu, M., Xue, C., Zhuang, H., and Yang, C.: Blue luminescent centers and microstructural evaluation by XPS and Raman in ZnO thin films annealed in vacuum, N2 and O2. Phys. B 388, 145 (2007).CrossRefGoogle Scholar
Yahia, S.B., Znaidi, L., Kanaev, A., and Petitet, J.: Raman study of oriented ZnO thin films deposited by sol–gel method. Spectrochim. Acta, Part A 71, 1234 (2008).CrossRefGoogle ScholarPubMed
Jaffe, J., Pandey, R., and Kunz, A.: Electronic structure of the rocksalt-structure semiconductors ZnO and CdO. Phys. Rev. B 43, 14030 (1991).CrossRefGoogle ScholarPubMed
Dulub, O., Boatner, L.A., and Diebold, U.: STM study of the geometric and electronic structure of ZnO(0001)–Zn, $\left( {000\bar{1}} \right)$–O, $\left( {00\bar{1}0} \right)$, and $\left( {00\bar{2}0} \right)$ surfaces. Surf. Sci. 519, 201 (2002).CrossRefGoogle Scholar
Chahmat, N., Haddad, A., Ain-Souya, A., Ganfoudi, R., Attaf, N., and Ghers, M.: Effect of Sn doping on the properties of ZnO thin films prepared by spray pyrolysis. J. Mod. Phys. 3, 1781 (2012).CrossRefGoogle Scholar
Shishiyanu, S.T., Shishiyanu, T.S., and Lupan, O.I.: Sensing characteristics of tin-doped ZnO thin films as NO2 gas sensor. Sens. Actuators, B 107, 379 (2005).CrossRefGoogle Scholar
Tsay, C-Y., Cheng, H-C., Tung, Y-T., Tuan, W-H., and Lin, C-K.: Effect of Sn-doped on microstructural and optical properties of ZnO thin films deposited by sol–gel method. Thin Solid Films 517, 1032 (2008).CrossRefGoogle Scholar
Bougrine, A., El Hichou, A., Addou, M., Ebothé, J., Kachouane, A., and Troyon, M.: Structural, optical and cathodoluminescence characteristics of undoped and tin-doped ZnO thin films prepared by spray pyrolysis. Mater. Chem. Phys. 80, 438 (2003).CrossRefGoogle Scholar
Miki-Yoshida, M., Morales, J., and Solis, J.: Influence of Al, In, Cu, Fe, and Sn dopants on the response of thin film ZnO gas sensor to ethanol vapour. Thin Solid Films 373, 137 (2000).Google Scholar
Kubelka, P. and Munk, F.: A contribution to the optics of pigments. Z. Tech. Phys. 12, 593 (1931).Google Scholar
Shkir, M.: Effect of titan yellow dye on morphological, structural, optical, and dielectric properties of zinc(tris) thiourea sulphate single crystals. J. Mater. Res. 31, 1046 (2016).CrossRefGoogle Scholar
Shkir, M., AlFaify, S., Ganesh, V., Yahia, I., Algarni, H., and Shoukry, H.: Brilliant green dye added zinc (tris) thiourea sulphate monocrystal growth with enhanced crystalline perfection, optical, photoluminescence and mechanical properties. J. Mater. Sci.: Mater. Electron. 27, 10673 (2016).Google Scholar
Ajili, M., Castagné, M., and Turki, N.K.: Study on the doping effect of Sn-doped ZnO thin films. Superlattices Microstruct. 53, 213 (2013).CrossRefGoogle Scholar
Andrade, E. and Miki-Yoshida, M.: Growth, structure and optical characterization of high quality ZnO thin films obtained by spray pyrolysis. Thin Solid Films 350, 192 (1999).Google Scholar
Shkir, M., Ganesh, V., AlFaify, S., Yahia, I., and Zahran, H.: Tailoring the linear and nonlinear optical properties of NiO thin films through Cr3+ doping. J. Mater. Sci.: Mater. Electron. 29, 6446 (2018).Google Scholar
Ganeev, R., Ryasnyansky, A., Kamalov, S.R., Kodirov, M., and Usmanov, T.: Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals. J. Phys. D: Appl. Phys. 34, 1602 (2001).CrossRefGoogle Scholar
Boyd, R.W.: Nonlinear Optics (Academic press, Elsevier Science, San Diego, 2003).Google Scholar
Shkir, M., Ganesh, V., AlFaify, S., and Yahia, I.S.: Structural, linear and third order nonlinear optical properties of drop casting deposited high quality nanocrystalline phenol red thin films. J. Mater. Sci.: Mater. Electron. 28, 10573 (2017).Google Scholar
Frumar, M., Jedelský, J., Frumarova, B., Wagner, T., and Hrdlička, M.: Optically and thermally induced changes of structure, linear and non-linear optical properties of chalcogenides thin films. J. Non-Cryst. Solids 326, 399 (2003).CrossRefGoogle Scholar
Ticha, H. and Tichy, L.: Semiempirical relation between non-linear susceptibility (refractive index), linear refractive index and optical gap and its application to amorphous chalcogenides. J. Optoelectron. Adv. Mater. 4, 381 (2002).Google Scholar
Wang, C.C.: Empirical relation between the linear and the third-order nonlinear optical susceptibilities. Phys. Rev. B 2, 2045 (1970).CrossRefGoogle Scholar
Wynne, J.: Nonlinear optical spectroscopy of χ(3) in LiNbO3. Phys. Rev. Lett. 29, 650 (1972).CrossRefGoogle Scholar
Nasu, H. and Mackenzie, J.D.: Nonlinear optical properties of glasses and glass or gel-based composites. Opt. Eng. 26, 262102 (1987).CrossRefGoogle Scholar
Adair, R., Chase, L., and Payne, S.A.: Nonlinear refractive index of optical crystals. Phys. Rev. B 39, 3337 (1989).CrossRefGoogle ScholarPubMed
Hanna, D.: Handbook of laser science and technology. J. Mod. Opt. 35, 12 (1988).CrossRefGoogle Scholar
Ganesh, V., Shkir, M., AlFaify, S., Yahia, I.S., Zahran, H.Y., and El-Rehim, A.F.A.: Study on structural, linear and nonlinear optical properties of spin coated N doped CdO thin films for optoelectronic applications. J. Mol. Struct. 1150(Suppl. C), 523 (2017).CrossRefGoogle Scholar
Chtouki, T., Soumahoro, L., Kulyk, B., Bougharraf, H., Kabouchi, B., Erguig, H., and Sahraoui, B.: Comparison of structural, morphological, linear and nonlinear optical properties of NiO thin films elaborated by spin-coating and spray pyrolysis. Optik 128, 8 (2017).CrossRefGoogle Scholar
Srinatha, N., Raghu, P., Mahesh, H., and Angadi, B.: Spin-coated Al-doped ZnO thin films for optical applications: Structural, micro-structural, optical and luminescence studies. J. Alloys Compd. 722, 888 (2017).CrossRefGoogle Scholar