Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-24T13:05:04.556Z Has data issue: false hasContentIssue false

Structural evolution of the amorphous solids produced by heating crystalline MgHPO4 · 3H2O

Published online by Cambridge University Press:  31 January 2011

B.C. Sales
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
B.C. Chakoumakos
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
L.A. Boatner
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
J.O. Ramey
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Get access

Abstract

The precise structural characteristics of the amorphous solids that are generated during the dehydration of crystalline MgHPO4 · 3H2O (newberyite) are reported. The results show that a dramatic change in the distribution of phosphate anions (i.e., chains of corner-linked PO4 tetrahedra) occurs during the process of dehydration and that anions up to 13 PO4 tetrahedra in length are formed. The distribution of phosphate anions formed at intermediate stages of the dehydration process was found to be in quantitative agreement with the theory of Parks and Van Wazer.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Hintze, C., Hanbuch der Mineralogie (De Grueyter, Berlin, 1933), Vol. 1, Part 4.Google Scholar
2Suter, D.J., Nature 218, 295 (1968); D.J. Suter and S.E. Wooley, Res. Vet. Sci. II, 299 (1970).Google Scholar
3Arrhenius, G., private communication.Google Scholar
4Kawazoe, H., Nishino, M., Isozaki, K., and Ametani, K., Bull. Chem. Soc. Jpn. 51, 2882 (1978); Inorganic Phosphate Materials, edited by T. Kanazawa (Elsevier, New York, 1989), Chap. 5.Google Scholar
5Sales, B. C., Ramsey, R. S., Bates, J. B., and Boatner, L. A., J. Non-Cryst. Solids 87, 137 (1986).CrossRefGoogle Scholar
6Sales, B. C., Ramey, J. O., and Boatner, L. A., Phys. Rev. Lett. 59, 1718 (1987).CrossRefGoogle Scholar
7Abbona, F., Boistelle, R., and Haser, R., Acta Cryst. B35, 2514 (1979); H. Barth, M. Catti, W. Joswig, and G. Ferraris, Tscher. Mineral. Petrog. Mitt. 32, 187 (1983).Google Scholar
8Parks, J.R. and Wazer, J. R. Van, J. Am. Chem. Soc. 79, 4890 (1957).Google Scholar
9Sales, B. C., Ramey, J. O., McCallum, J. C., and Boatner, L. A., Phys. Rev. Lett. 62, 1138 (1989); J. Non-Cryst. Solids 126, 179 (1990).CrossRefGoogle Scholar
10Ewing, R.C., Chakoumakos, B.C., Lumpkin, G.R., and Murakami, T., Mater. Res. Soc. Bull. XII, 58 (1987).Google Scholar
11Woodhead, J. A., Rossman, G. R., and Thomas, A. P., Am. Mineral. 76, 1535 (1991).Google Scholar
12Fecht, H.J., Fu, Z., and Johnson, W. L., Phys. Rev. Lett. 64, 1753 (1990).CrossRefGoogle Scholar
13Liebau, F., Structural Chemistry of Silicates (Springer-Verlag, New York, 1985), p. 129.CrossRefGoogle Scholar