Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-07-04T21:39:35.260Z Has data issue: false hasContentIssue false

Structural evolution in lead substituted Bi–Sr–Ca–Cu–O superconductors

Published online by Cambridge University Press:  31 January 2011

R. Ramesh
Affiliation:
Bellcore, Red Bank, New Jersey 07701
K. Remschnig
Affiliation:
Bellcore, Red Bank, New Jersey 07701
J.M. Tarascon
Affiliation:
Bellcore, Red Bank, New Jersey 07701
S.M. Green
Affiliation:
Center for Superconductivity Research, Department of Physics and Astronomy, University of Maryland, College Park, Maryland 20752
Get access

Abstract

The structural evolution and cationic stoichiometry of Bi(Pb)–Sr–Ca–Cu–O superconductors have been studied using transmission electron microscopy and x-ray microanalysis. The nature of the incommensurate modulation changes systematically as increasing amounts of lead are added. X-ray microanalysis studies reveal that lead replaces Bi in the structure. Pb addition improves the microstructural homogeneity leading to the formation of a nearly homogeneous sample consisting of the “2223” phase. Based upon all the experimental results, it is inferred that the role of Pb substitution is related to the thermodynamics and kinetics of the formation of the n = 3 phase.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Michel, C., Hervieu, M., Borel, M. M., Grandin, A., Deslandes, F., Provost, J., and Raveau, B., Z. Phys. B68, 421 (1987).CrossRefGoogle Scholar
2Maeda, H., Tanaka, Y., Fukutomi, M., and Asano, T., Jpn. J. Appl. Phys. Lett. 27, L209 (1988).CrossRefGoogle Scholar
3Subramanian, M. A., Torardi, C. C., Calabrese, J. C., Gopala-krishnan, J., Morrissey, K. J., Askew, T. R., Flippen, R. B., Choudhry, U., and Sleight, A. W., Science 239, 1015 (1988).CrossRefGoogle Scholar
4Tarascon, J. M., LePage, Y., Barboux, P., Bagley, B. G., Greene, L. H., McKinnon, W. R., Hull, G. W., Giroud, M., and Hwang, D. M., Phys. Rev. B 37, 9382 (1988); R. M. Hazen, C. T. Prewitt, R. J. Angel, N. L. Ross, L. W. Finger, C. G. Hadidiacos, D. R. Veblen, P. J. Heaney, P. H. Hor, R. L. Meng, Y. Y. Sun, Y. Q. Wang, Y. Y. Xue, Z. L. Huang, L. Gao, J. Bechtold, and C. W. Chu, Phys. Rev. Lett. 60, 1174 (1988).CrossRefGoogle Scholar
5Sheng, Z. Z. and Hermann, A. M., Nature 332, 138 (1988); Z. Z. Sheng and A. M. Hermann, Nature 332, 55 (1988).CrossRefGoogle Scholar
6Tarascon, J. M., McKinnon, W. R., Barboux, P., Hwang, D. M., Bagley, B. G., Greene, L. H., Hull, G., LePage, Y., Stoffel, N., and Giroud, M., Phys. Rev. B 38, 8885 (1988).CrossRefGoogle Scholar
7Sunshine, S., Siegrist, T., Schneemeyer, L. F., Murphy, D. W., Cava, R. J., van Dover, R. B., Fleming, R. M., Glarum, S. H., Naka-hara, S., Farrow, R., Krajewski, J. J., Zahurak, S. M., Waszczak, J. V., Marshall, J. H., Marsh, P., Rupp, L. W., Jr., and Peck, W. F., Phys. Rev. B 38, 893 (1988).CrossRefGoogle Scholar
8Shaw, T. M., Shivashankar, S. A., LaPlaca, S. J., Cuomo, J. J., McGuire, T. R., Roy, R. A., Kelleher, K. H., and Yee, D. S., Phys. Rev. B 37, 9856 (1988).CrossRefGoogle Scholar
9Veblen, D. R., Heaney, P. J., Angel, R. J., Finger, L. W., Hazen, R. M., Prewitt, C. T., Ross, N. L., Chu, C. W., Hor, P. H., and Meng, R. L., Nature 332, 334 (1988).CrossRefGoogle Scholar
10Aurivillius, B., Arkiv. Khemi. 1, 499 (1949).Google Scholar
11Tarascon, J. M., Barboux, P., Hull, G. W., Ramesh, R., Greene, L. H., Giroud, M., Hegde, M. S., and McKinnon, W. R., Phys. Rev. B 39, 4316 (1989).CrossRefGoogle Scholar
12Green, S. M., Jiang, C., Mei, Y., Luo, H. L., and Politis, C., Phys. Rev. B 38, 5016 (1988).CrossRefGoogle Scholar
13Ramesh, R., Thomas, G., Green, S. M., Jiang, C., Mei, Y., Rudee, M. L., and Luo, H. L., Phys. Rev. B 38, 7070 (1988).CrossRefGoogle Scholar
14Ramesh, R., van Tendeloo, G., Thomas, G., Green, S. M., Mei, Y., Jiang, C., and Luo, H. L., Appl. Phys. Lett. 53, 2220 (1988).CrossRefGoogle Scholar
15Chen, C. H., Werder, D. J., Espinosa, G. P., and Cooper, A. S., Phys. Rev. B 39, 4686 (1989).CrossRefGoogle Scholar
16Ikeda, Y., Takano, M., Hiroi, Z., Oda, K., Kitaguchi, H., Takada, J., Miura, Y., Takeda, Y., Yamamoto, O., and Mazaki, H., Jpn. J. Appl. Phys. 27, L2067 (1988).CrossRefGoogle Scholar
17Ramesh, R., Hegde, M. S., Chang, C. C., Tarascon, J. M., Green, S. M., and Luo, H. L., J. Appl. Phys. 66, 4878 (1989).CrossRefGoogle Scholar
18Green, S. M., Mei, Y., Manzi, A. E., Luo, H. L., Ramesh, R., and Thomas, G., J. Appl. Phys. 66, 728 (1989).CrossRefGoogle Scholar
19Ramesh, R., Green, S. M., Mei, Y., Manzi, A. E., and Luo, H. L., J. Appl. Phys. 66, 1265 (1989).CrossRefGoogle Scholar
20LePage, Y., McKinnon, W. R., Tarascon, J. M., and Barboux, P., Phys. Rev. B (in press).Google Scholar
21Gao, Y., Lee, P., Coppens, P., Subramanian, M. A., and Sleight, A. W., Science 241, 954 (1988).CrossRefGoogle Scholar
22Lee, P., Gao, Y., Sheu, H. S., Petricek, V., Restori, R., Coppens, P., Darovskikh, A., Philips, J. C., Sleight, A. W., and Subramanian, M. A., Science 244, 62 (1989).CrossRefGoogle Scholar
23Shindo, D., Hiraga, K., Hirabayashi, M., Kobayashi, N., Kikuchi, M., Kusaba, K., Syono, Y., and Moto, Y., Jpn. J. Appl. Phys. 27, L2048 (1988).CrossRefGoogle Scholar
24Tallon, J. L., Buckley, R. G., Gilberd, P. W., and Presland, M. R., Physica C 158, 247 (1989).CrossRefGoogle Scholar
25Chippendale, A. M., Hibble, S. J., Hriljac, J. A., Cowey, L., Bagguley, D. M. S., Day, P., and Cheetham, A. K., Physica C 152,154 (1988).CrossRefGoogle Scholar
26Ramesh, R., Wang, E., Greene, L. H., Hegde, M. S., Tarascon, J-M., and Kim, Y., J. Mater. Res. 5, 251 (1990).CrossRefGoogle Scholar
27Kingery, W. D., Introduction to Ceramics (John Wiley and Sons, New York, 1967).Google Scholar
28Petzow, G. and Kaysser, W. A., in Science of Ceramics, 10, edited by Hausner, H. H. (Bad Honnef, Deutsche Keramische Gesellschaft, 1980), p. 269.Google Scholar
29Bocquet, A. E., Dobson, J. F., Healy, P. C., Myhra, S., and Thomson, J. G., Int. J. Modern Physics B3, 455 (1989).CrossRefGoogle Scholar
30Hegde, M. S. (unpublished research).Google Scholar
31Torardi, C. C., Parise, J. B., Subramanian, M. A., Gopalakrishnan, J., and Sleight, A. W., Physica C 157, 115 (1989).CrossRefGoogle Scholar
32Hewat, E. A., Capponi, J. J., and Marezio, M., Physica C 157, 502 (1989).CrossRefGoogle Scholar
33Zandbergen, H. W., Groen, W. A., Mijlhoff, F. C., van Tendeloo, G., and Amelinckx, S., Physica C 156, 325 (1988).CrossRefGoogle Scholar
34Withers, R. L., Thomson, J. G., Wallenberg, L. R., FitzGerald, J. D., Anderson, J. S., and Hyde, B. G., J. Phys. C 21, 6067 (1988).CrossRefGoogle Scholar
35Sequiera, A., Rajagopal, H., and Yakhmi, J. V., Physica C 157, 515 (1989).CrossRefGoogle Scholar
36Tarascon, J. M., LePage, Y., McKinnon, W. R., Ramesh, R., Eibschutz, M., Tselepis, E., Wang, E., and Hull, G. W., Physica C 167, 20 (1990).CrossRefGoogle Scholar
37Tarascon, J. M., McKinnon, W. R., LePage, Y., Remschnig, K., Ramesh, R., Jones, R., Pleizier, G., and Hull, G. W., Physica C (in press).Google Scholar
38Zandbergen, H. W., Groen, W. A., Mijlhoff, F. C., van Tendeloo, G., and Amelinckx, S., Physica C 156, 325 (1988).CrossRefGoogle Scholar