Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-26T22:26:15.002Z Has data issue: false hasContentIssue false

Structural comparison of Ba1−xKxBiO3 superconducting thin films

Published online by Cambridge University Press:  03 March 2011

C. Ciofi
Affiliation:
Dipartimento di Ingegneria dell' Informazione via Diotisalvi 2, 56126 Pisa, Italy
C.E. Platt
Affiliation:
Science and Technology Center for Superconductivity, 104 South Goodwin, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
J.A. Eades
Affiliation:
Science and Technology Center for Superconductivity, 104 South Goodwin, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Jun Amano
Affiliation:
Hewlett-Packard Laboratories, 3500 Deer Creek Road, Palo Alto, California 94303
R. Hu
Affiliation:
TRW, R1/2170 One Space Park, Redondo Beach, California 90278
Get access

Abstract

The microstructure of Ba1−xKxBiO3 (BKBO) thin films from three different sources has been extensively compared by transmission electron microscopy studies. The three films were prepared independently in three different laboratories on three different substrates of (100) orientation and displayed excellent superconducting properties. The observed microstructure is remarkably similar in the three films. They are epitaxial with (100) orientation through all their extension and no cracks have been observed. Their defect density is similar and the resulting extension of defect-free regions is of the order of 50–80 nm.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Moon, B. M., Platt, C. E., Schweinfurth, R. A., and Harlingen, D.J. Van, Appl. Phys. Lett. 59, 1905 (1991).CrossRefGoogle Scholar
2Huang, Q., Zasadzinski, J. F., Gray, K. E., Richards, D. R., and Hinks, D. G., Appl. Phys. Lett. 57, 2356 (1990).CrossRefGoogle Scholar
3Hu, R., Lee, A. E., Chan, H. W., and Pettiette-Hall, C.L., IEEE Trans. Appl. Supercond. 3, 1556 (1993).CrossRefGoogle Scholar
4Amano, Jun, Ko, H., Narbutovskih, M., Sheats, J., and Tibs, K., J. Appl. Phys. 74, 4620 (1993).Google Scholar
5Hellman, E. S., Martin, S., Hartford, E. H. Jr., Werder, D. J., Roesler, G. M., and Tedrow, P. M., Physica C 201, 166170 (1992).Google Scholar
6Fink, R. L., Thompson, M., Hilbert, C., and Kroger, H., Appl. Phys. Lett. 61, 595 (1992).CrossRefGoogle Scholar
7Platt, C. E., Teepe, M. R., Ciofi, C., Zhang, H., Dravid, V. P., Schweinfurth, R. A., Van Harlingen, D.J., Eades, J. A., Lin, C. H., Strother, D., and Hammond, R., in Layered Superconductors: Fabrication, Properties and Applications, edited by Shaw, D.T., Tsuei, C. C., Schneider, T. R., and Shiohara, Y. (Mater. Res. Soc. Symp. Proc. 275, Pittsburgh, PA, 1992), p. 807.Google Scholar
8Hinks, D. G., Mitchell, A. W., Zheng, Y., Richards, D. R., and Dabrowsky, B., Appl. Phys. Lett. 54 (16), 1585 (1989).CrossRefGoogle Scholar
9Geller, S. and Bala, V. B., Acta Crystallogr. 9, 1019 (1956).Google Scholar
10Hellman, E. S., Hartford, E. H., and Gyorgy, E. M., Appl. Phys.Lett. 58, 1335 (1991).CrossRefGoogle Scholar
11Touloukian, Y. S., Kirby, R. K., Taylor, R. E., and Lee, T.Y.R., Thermophysical Properties of Matter (Plenum Press, New York, 1970), Vol. 2.Google Scholar
12Pei, S., Jorgensen, J. D., Dabrowski, B., Hinks, D. G., Richards, D. R., Mitchell, A. W., Newsam, J. M., Sinhid, S. K., Vaknin, D., and Jacobson, A. J., Phys. Rev. B 41, 4116 (1990).CrossRefGoogle Scholar
13Pei, S., Jorgensen, J. D., Hinks, D. G., Zheng, Y., Richards, D. R., Dabrowski, B., and Mitchell, A. W., J. Solid State Chem. 95, 29 (1991).CrossRefGoogle Scholar
14Matthews, J. W., Epitaxial Growth, Part B, edited by Matthews, J. W. (Academic Press, New York, 1975), pp. 559609.CrossRefGoogle Scholar