Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-18T01:47:23.287Z Has data issue: false hasContentIssue false

Structural characterization of Ti implanted AlN

Published online by Cambridge University Press:  03 March 2011

M. Borowski
Affiliation:
LURE, Université Paris Sud, BâCt. 209 A, 91405 Orsay Cedex, France
A. Traverse
Affiliation:
LURE, Université Paris Sud, BâCt. 209 A, 91405 Orsay Cedex, France
J.P. Dallas
Affiliation:
CECM, 15, rue G. Urbain, 94407 Vitry Cedex, France
Get access

Abstract

Sintered AlN ceramics were implanted by 1 × 1017 Ti/cm2 at an energy of 70 keV in order to investigate the role of the chemical properties of the implanted species on the phase formed during the implantation process. The implanted ions were found in a depth profile corresponding to the calculated distribution of the vacancies produced during the implantation process instead of the predicted ion profile. Identification of the local environment of Ti and of the resulting phase led us to conclude that Ti is surrounded by N after the collision cascade and forms TiN after post-implantation annealing. The TiN nucleus if formed by substitution of Al by Ti. Therefore, the heat of formation, which is more negative for TiN than for AlN, is found to be a key parameter to predict the final system.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Sheppard, L. M., Am. Ceram. Soc. Bull. 70, 1467 (1991).Google Scholar
2Marchant, D. D. and Nemecek, T. E., Am. Ceram. Soc. Adv. in Ceram. 26, 19 (1989).Google Scholar
3Averback, R. S., Diaz de la Rubia, T., Hsieh, H., and Benedek, R., Nucl. Instrum. Methods B59/60, 709 (1991).CrossRefGoogle Scholar
4Cheng, Y. T., Mater. Sci. Rep. 5, 45 (1990).CrossRefGoogle Scholar
5Desimoni, J. and Traverse, A., Phys. Rev. B 48, 13 266 (1993).CrossRefGoogle Scholar
6Traverse, A., Parent, P., Mimault, J., Hagege, S., and Du, J., Nucl. Instrum. Methods B84, 204 (1994).CrossRefGoogle Scholar
7Du, J., Traverse, A., and Hagège, S., Mat. Sci. Forum 126/128, 703 (1993).CrossRefGoogle Scholar
8Wagman, D. D., Evans, W. H., Parker, V. B., Schumm, R. H., Bailey, S. M., Halow, I., Churney, K. L., and Nuttall, R. L., in CRC-Hcmdbook of Chemistry and Physics, edited by Weast, R. C. and Astle, M. J. (CRC Press, Boca Raton, FL, 1989), p. D-50.Google Scholar
9Th. Mroz, Am. Ceram. Soc. Bull. 73, 77 (1994).Google Scholar
10Denanot, M. F. and Rabier, J., Mater. Sci. Eng. A109, 157 (1989).Google Scholar
11Naguchi, T. and Mizuno, M., Kogyo Kogaku Zasshi 70, 839 (1967).Google Scholar
12Bernas, H., Chaumont, J., Cottereau, E., Meunier, R., Traverse, A., Clerc, C., Kaitasov, O., Lalu, F., Le Du, D., Moroy, G., and Salomsé, M., Nucl. Instrum. Methods B62, 416 (1992).CrossRefGoogle Scholar
13Lengauer, W., J. Alloys and Compounds 186, 293 (1992).Google Scholar
14Doolittle, L. R., Nucl. Instrum. Methods B9, 344 (1985).CrossRefGoogle Scholar
15Ziegler, J. F., Biersack, J. P., and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1986), Vols. I and II.Google Scholar
16Stern, E. A., Sayers, D. E., and Lytle, W., Phys. Rev. 11, 1975 (1951).Google Scholar
17Michalowicz, A., Logiciels pour la Chirnie (Société française de Chimie, Paris, 1991), p. 102.Google Scholar
18McKale, A. G., J. Am. Chem. Soc. 110, 3763 (1988).Google Scholar
19Kampers, F. W. H., Doctoral Thesis, University of Eindhoven (1989).Google Scholar
20Smithells Metals Reference Book, 6th ed., edited by Brandes, E. A. (Butterworths, London, 1983).Google Scholar
21Priem, T., Beuneu, B., de Novion, C., Finel, A., and Livet, F., J. Phys. France 50, 2217 (1989).CrossRefGoogle Scholar
22Beer, A., Ann. Phys. 86, 78 (1952).Google Scholar
23Agarwal, B. K., X-Ray Spectroscopy, 2nd ed. (Springer-Verlag, Berlin, 1979).CrossRefGoogle Scholar
24Feldman, L. C. and Mayer, J. W., Fundamentals of Surface and Thin Film Analysis (North-Holland, New York, 1986).Google Scholar