Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-02T17:26:07.975Z Has data issue: false hasContentIssue false

Structural characterization of electrodeposited nanophase Ni–Cu alloys

Published online by Cambridge University Press:  01 January 2006

S.K. Ghosh*
Affiliation:
Materials Processing Division, Materials Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
A.K. Grover
Affiliation:
Materials Processing Division, Materials Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
G.K. Dey
Affiliation:
Materials Science Division, Materials Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
U.D. Kulkarni
Affiliation:
Materials Science Division, Materials Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
R.O. Dusane
Affiliation:
Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology, Bombay, Mumbai 400 076, India
A.K. Suri
Affiliation:
Materials Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
S. Banerjee
Affiliation:
Materials Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

An investigation of Ni–Cu alloys electrodeposited from aqueous bath, using bothdirect current (dc) and pulsed current (pc) deposition techniques, has revealed many interesting features: A modulated structure with typical layer thickness of 90 and75 nm of copper-rich and nickel-rich layers, respectively, is formed in dc plating. A surprising observation was that the modulation direction was parallel to the substrate, unlike in the case of artificial multilayers wherein it is along the growth direction. No such compositional modulations were observed in pc-plating in the present work. Spinodal phase separation, accompanied by L10 ordering, was found to have occurred in the as deposited samples in both the cases. The size of the deposited crystals in both the cases has been found to be in the range of 2.5–30 nm. Detailed high-resolution transmission electron microscopy has shown that the atomic arrangements are nearly perfect right upto the boundaries of the nanosized grains.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gleiter, H.: Nanocrystalline materials. Prog. Mater. Sci. 3, 223 (1989).CrossRefGoogle Scholar
2.Birringer, R.: Nanocrystalline materials. Mater. Sci. Eng. A 117, 33 (1989).CrossRefGoogle Scholar
3.Suryanarayana, C.: Nanocrystalline materials. Int. Mater. Rev. 40, 41 (1995).CrossRefGoogle Scholar
4.Lu, K.: Nanocrystalline metals crystallized from amorphous solids: Nanocrystallization, structure, and properties. Mater. Sci. Eng. R 16, 161 (1996).CrossRefGoogle Scholar
5.Lu, K., Dong, Z.F., Bakonyi, I. and Cziraki, A.: Thermal stability and grain growth of a melt-spun HfNi5 nanophase alloy. Acta Metall. Mater. 43, 2641 (1995).CrossRefGoogle Scholar
6.Kear, B.H. and McCandish, L.E.: Chemical processing and properties of nanostructured WC–Co materials. Nanostruct. Mater. 3, 19 (1993).CrossRefGoogle Scholar
7.Koch, C.C.: The synthesis and structure of nanocrystalline materials produced by mechanical attrition: A review. Nanostruct. Mater. 2, 109 (1993).CrossRefGoogle Scholar
8.Bakker, H., Zhou, G.F. and Yang, H.: Mechanically driven disorder and phase transformations in alloys. Prog. Mater. Sci. 39, 159 (1995).CrossRefGoogle Scholar
9.Valiev, R.Z., Korznikor, A.V. and Mulyukov, R.R.: Structure and properties of ultrafine-grained materials produced by severe plastic deformation. Mater. Sci. Eng. A 168, 141 (1993).CrossRefGoogle Scholar
10.Erb, U., El-Sherik, A.M., Palumbo, G. and Aust, K.T.: Synthesis, structure and properties of electroplated nanocrystalline materials. Nanostruct. Mater. 2, 383 (1993).CrossRefGoogle Scholar
11.Scorchillety, V.: Theoretical Electrochemistry (Mir Publication, Moscow, USSR, 1974), p. 476.Google Scholar
12.Ibl, N., Puippe, J.C. and Angerer, H.: Electrocrystallization in pulse electrolysis. Surf. Technol. 6, 287 (1978).CrossRefGoogle Scholar
13.Roos, J.R., Celis, J.P., Buelens, C. and Goris, D.: Application of polarization measurements in the control of metal deposition. Process Metall. 3, 177 (1984).Google Scholar
14.Tóth-Kádár, E., Péter, L., Becsei, T., Tóth, J., Pogány, L., Tarnóczi, T., Kamasa, P., Bakonyi, I., Láng, G., Cziráki, A. and Schwarzachar, W.: Preparation and magnetoresistance characteristics of electrodeposited Ni–Cu alloys and Ni–Cu/Cu multilayers. J. Electrochem. Soc. 147, 3311 (2000).CrossRefGoogle Scholar
15.Ying, R.Y.: Electrodeposition of copper-nickel alloys from citrate solutions on a rotating disk electrode. J. Electrochem. Soc. 135, 2957 (1988).CrossRefGoogle Scholar
16.Quang, K. Vu, Chassaing, E., Viet, B. Le, Celis, J.P. and Roos, J.R.: Codeposition of nickel and copper. Metal Finishing . 10, 25 (1985).Google Scholar
17.Chassaing, E., Quang, K. Vu and Wiart, R.: Mechanism of copper-nickel alloy electrodeposition. J. Appl. Electrochem. 17, 1267 (1987).CrossRefGoogle Scholar
18.Cherkaoui, M., Chassaing, E. and Quang, K. Vu: Pulse plating of Ni–Cu alloys. Surf. Coating. Technol. 34, 243 (1988).CrossRefGoogle Scholar
19.Green, T.A., Russell, A.E. and Roy, S.: The development of a stable citrate electrolyte for the electrodeposition of copper-nickel alloys. J. Electrochem. Soc. 145, 875 (1998).CrossRefGoogle Scholar
20.Lashmore, D.S. and Dariel, M.P.: Electrodeposited Cu–Ni textured superlattices. J. Electrochem. Soc. 135, 1218 (1988).CrossRefGoogle Scholar
21.Bird, K.D. and Schlesinger, M.: Giant magnetoresistance in electrodeposited Ni/Cu and Co/Cu multilayers. J. Electrochem. Soc. 142, 165L (1995).CrossRefGoogle Scholar
22.Brenner, A.: Electrodeposition of Alloys, Vol. I (Academic Press, New York, 1963), pp. 558574.CrossRefGoogle Scholar
23.Ghosh, S.K., Grover, A.K., Dey, G.K. and Totlani, M.K.: Nanocrystalline Ni–Cu alloy plating by pulse electrolysis. Surf. Coat. Technol. 126, 48 (2000).CrossRefGoogle Scholar
24.Chakrabarti, D.J., Laughlin, D.E., Chen, S.W. and Chang, Y.A.: Binary Alloys Phase Diagrams, 2nd ed., edited by Massalski, T.B. (ASM International, Materials Park, OH, 1992), p. 1442.Google Scholar
25.Sarrazin, C., Gaboriaud, R.J. and Rivière, J.P.: TEM investigation of Ni–Cu thin film coatings obtained by multilayer technique, coevaporation and ion-beam-assisted deposition. Phys. Status Solidi 107, 867 (1988).CrossRefGoogle Scholar
26.Meijering, J.L., Rathenau, G.W., Van der Steeg, M.G. and Braun, P.B.: A miscibility gap in the face-centered cubic phase of the copper-nickel-chromium system. J. Inst. Metals 84, 118 (1956).Google Scholar
27.Ryan, F., Pugh, E. and Smoluchowski, R.: Superparamagnetism, nonrandomness, and irradiation effects in Cu–Ni alloys. Phys. Rev. 116, 1106 (1959).CrossRefGoogle Scholar
28.Wagner, R., Poershke, R. and Wollenberger, H.: Short-range clustering and long-range periodic decomposition of an electron irradiated Ni–Cu alloy. J. Phys. F 12, 405 (1982).CrossRefGoogle Scholar
29.Poershke, R. and Wollenberger, H.: Kinetics of interstitialcy diffusion in electron-irradiated Cu–Ni alloys. J. Phys. F 6, 26 (1976).Google Scholar
30.Shrikanth, S. and Jacob, K.T.: Thermodynamic properties of Cu–Ni alloys: Measurements and assessment. Mater. Sci. Technol. 5, 427 (1989).CrossRefGoogle Scholar
31.Daniel, V. and Lipson, H.: The dislocation of an alloy of copper, iron and nickel. Further x-ray works. Proc. R. Soc. A 182, 378 (1944).Google Scholar
32.Fisher, J.C.: On the strength of solid-solution alloys. Acta Metall. 2, 9 (1954).CrossRefGoogle Scholar
33.Nagamine, Y., Haruta, O. and Hara, M.: Surface morphology of spatiotemporal stripe patterns formed by Ag/Sb co-electrodeposition. Surf. Sci. 575, 17 (2005).CrossRefGoogle Scholar
34.Krastev, I. and Koper, M.T.M.: Pattern formation during the electrodeposition of a silver-antimony alloy. Physica A 213, 199 (1995).CrossRefGoogle Scholar
35.Edington, J.W.: Interpretation of Transmission Electron Micrographs, Monographs in Practical Electron Microscopy in Materials Science, Part 3. (Philips Technical Library, Macmillan, London, U.K., 1975) p. 45.Google Scholar
36.Gundlier, I. and Murr, L.E.: Electron microscopy study of electrodeposited Ni films in the 0.1–50 μ range. J. Vac. Sci. Technol. 12, 762 (1975).CrossRefGoogle Scholar
37.Nakahara, S.: Growth twins and development of polycrystallinity in electrodeposits. J. Cryst. Growth 55, 281 (1981).CrossRefGoogle Scholar
38.Willams, D.B. and Carter, C.B.: Transmission Electron Microscopy III (Plenum Press, New York, 1996), pp. 459482.CrossRefGoogle Scholar
39.Thomas, G.J., Seigel, R.W. and Eastman, J.A.: Grain boundaries in nanocphase paladium: High resolution electron microscopy and image simulation. Scripta Mater. 24, 201 (1990).CrossRefGoogle Scholar
40.Ranganathan, S., Ramakrishnan, K., Kulkarni, U.D. and Mukhopadhyay, N.K.: On the relationship between cubic crystalline coincidence site lattices and quasiperiodic superlattices. Mater. Sci. Eng. A 294–296, 429 (2000).CrossRefGoogle Scholar
41.Dey, G.K., Savalia, R.T., Neogy, S., Srivastava, D., Tewari, R., and Banerjee, S.: Nanocrystal formation by crystallization of Zr52Ti6Al10Cu18Ni14 bulk metallic glass, in Proceedings of the TMS Conference, Processing and Properties of Structural Nanomaterials, edited by Shaw, L.L., Suryanarayana, C., and Mishra, R. S. (Chicago, IL, November 9-12, 2003), TMS Warrendale, PA, p. 197.Google Scholar
42.Tanner, L.E.: Diffraction contrast from elastic shear strains due to coherent phases. Philos. Mag. 14, 111 (1966).CrossRefGoogle Scholar
43.Batra, I.S., Dey, G.K., Kulkarni, U.D. and Banerjee, S.: Microstructure and properties of a Cu–Cr–Zr alloys. J. Nucl. Mater. 299, 91 (2001).CrossRefGoogle Scholar
44.Paunovic, M. and Schlensinger, M.: Fundamentals of Electrochemical Deposition (John Wiley & Sons, New York, 1998), p. 87.Google Scholar
45.Celis, J.P., Haseeb, A. and Roos, J.R. Electrodeposition of Cu/Ni compositionaly modulated multilayers by the dual-plating bath technique, in Proc of 59th Inter Conf. on Surf. Fin. (Torquay 24–26 April, 1991), p. 67.Google Scholar
46.Ibl, N.: Some theoretical aspects of pulse electrolysis. Surf. Technol. 10, 81 (1980).CrossRefGoogle Scholar
47.Lopez, V.M., Sakurai, H.T. and Hirano, K.: A study of phase separation of Cu–Ni alloys by AP-FIM. Scripta Metall. Mater. 26, 99 (1992).CrossRefGoogle Scholar
48.Klement, U., Erb, U., Al-Sherik, A.M. and Aust, K.T.: Thermal stability of nanocrystalline Ni. Mater. Sci. Eng. A 203, 177 (1995).CrossRefGoogle Scholar
49.Bakker, H.: Enthalpies in Alloys—Miedema's Semi-empirical Model (Trans Tech Publications Ltd., Uetikon-Zurich, Switzerland, 1998).Google Scholar
50.Datta, A. and Soffa, W.A.: The structure and properties of age hardened Cu–Ti alloys. Acta Metall. 24, 987 (1976).CrossRefGoogle Scholar