Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T12:32:00.049Z Has data issue: false hasContentIssue false

Structural characterization of B-doped diamond nanoindentation tips

Published online by Cambridge University Press:  24 November 2011

David J. Sprouster*
Affiliation:
Department of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University, Canberra, Australian Capital Territory 0200, Australia
Simon Ruffell
Affiliation:
Department of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University, Canberra, Australian Capital Territory 0200, Australia
Jodie E. Bradby
Affiliation:
Department of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University, Canberra, Australian Capital Territory 0200, Australia
James S. Williams
Affiliation:
Department of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University, Canberra, Australian Capital Territory 0200, Australia
Mark N. Lockrey
Affiliation:
Microstructural Analysis Unit, University of Technology, Sydney, Broadway, New South Wales 2007, Australia
Matthew R. Phillips
Affiliation:
Microstructural Analysis Unit, University of Technology, Sydney, Broadway, New South Wales 2007, Australia
Ryan C. Major
Affiliation:
Hysitron, Inc., Minneapolis, Minnesota 55344
Oden L. Warren
Affiliation:
Hysitron, Inc., Minneapolis, Minnesota 55344
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We report on the electrical and structural properties of boron-doped diamond tips commonly used for in-situ electromechanical testing during nanoindentation. The boron dopant environment, as evidenced by cathodoluminescence (CL) microscopy, revealed significantly different boron states within each tip. Characteristic emission bands of both electrically activated and nonelectrically activated boron centers were identified in all boron-doped tips. Surface CL mapping also revealed vastly different surface properties, confirming a high amount of nonelectrically activated boron clusters at the tip surface. Raman microspectroscopy analysis showed that structural characteristics at the atomic scale for boron-doped tips also differ significantly when compared to an undoped diamond tip. Furthermore, the active boron concentration, as inferred via the Raman analysis, varied greatly from tip-to-tip. It was found that tips (or tip areas) with low overall boron concentration have a higher number of electrically inactive boron, and thus non-Ohmic contacts were made when these tips contacted metallic substrates. Conversely, tips that have higher boron concentrations and a higher number of electrically active boron centers display Ohmic-like contacts. Our results demonstrate the necessity to understand and fully characterize the boron environments, boron concentrations, and atomic structure of the tips prior to performing in situ electromechanical experiments, particularly if quantitative electrical data are required.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Eremets, M.I., Struzhkin, V.V., Mao, H-K., and Hemley, R.J.: Superconductivity in boron. Science 293, 272 (2001).CrossRefGoogle ScholarPubMed
2.Besson, J.M., Mokhtari, E.H., Gonzalez, J., and Weill, G.: Electrical properties of semimetallic silicon III and semiconductive silicon IV at ambient pressure. Phys. Rev. Lett. 59, 473 (1987).CrossRefGoogle ScholarPubMed
3.Nowak, R., Chrobak, D., Nagao, S., Vodnick, D., Berg, M., Tukiainen, A., and Pessa, M.: An electric current spike linked to nanoscale plasticity. Nat. Nanotechnol. 4, 287 (2009).CrossRefGoogle ScholarPubMed
4.Bradby, J.E., Williams, J.S., and Swain, M.V.: In situ electrical characterization of phase transformations in Si during indentation. Phys. Rev. B 67, 085205 (2003).CrossRefGoogle Scholar
5.Ruffell, S., Bradby, J.E., Williams, J.S., and Warren, O.L.: An in situ electrical measurement technique via a conducting diamond tip for nanoindentation in silicon. J. Mater. Res. 22, 578 (2007).CrossRefGoogle Scholar
6.Mann, A.B., van Heerden, D., Pethica, J.B., and Weihs, T.P.: Size-dependent phase transformations during point loading of silicon. J. Mater. Res. 15, 1754 (2000).CrossRefGoogle Scholar
7.Ruffell, S., Sears, K., Knights, A.P., Bradby, J.E., and Williams, J.S.: Experimental evidence for semiconducting behavior of Si-XII. Phys. Rev. B 83, 075316 (2011).CrossRefGoogle Scholar
8.Fang, L., Muhlstein, C.L., Collins, J.G., Romasco, A.L., and Friedman, L.H.: Continuous electrical in situ contact area measurement during instrumented indentation. J. Mater. Res. 23, 2480 (2008).CrossRefGoogle Scholar
9.Fujisawa, N., Ruffell, S., Bradby, J.E., Williams, J.S., Haberl, B., and Warren, O.L.: Understanding pressure-induced phase-transformation behavior in silicon through in situ electrical probing under cyclic loading conditions. J. Appl. Phys. 105, 106111 (2009).CrossRefGoogle Scholar
10.Ruffell, S., Bradby, J.E., Fujisawa, N., and Williams, J.S.: Identification of nanoindentation-induced phase changes in silicon by in situ electrical characterization. J. Appl. Phys. 101, 083531 (2007).CrossRefGoogle Scholar
11.Bhaskaran, M., Sriram, S., Ruffell, S., and Mitchell, A.: Nanoscale characterization of energy generation from piezoelectric thin films. Adv. Funct. Mater. 21, 2251 (2011).CrossRefGoogle Scholar
13.Kalinin, S.V., Rodriguez, B.J., Jesse, S., Karapetian, E., Mirman, B., Eliseev, E.A., and Morozovska, A.N.: Nanoscale electromechanics of ferroelectric and biological systems: A new dimension in scanning-probe microscopy. Annu. Rev. Mater. Res. 37, 189 (2007).CrossRefGoogle Scholar
14.Holm, R.: Electric Contacts; Theory and Applications (Springer, New York, 2000).Google Scholar
15.Tachibana, T., Williams, B.E., and Glass, J.T.: Correlation of the electrical properties of metal contacts on diamond films with the chemical nature of the metal-diamond interface. i. gold contacts: A non-carbide-forming metal. Phys. Rev. B 45, 11968 (1992).CrossRefGoogle ScholarPubMed
16.Tachibana, T., Williams, B.E., and Glass, J.T.: Correlation of the electrical properties of metal contacts on diamond films with the chemical nature of the metal-diamond interface. ii. Titanium contacts: A carbide-forming metal. Phys. Rev. B 45, 11975 (1992).CrossRefGoogle ScholarPubMed
17.Trew, R.J., Yan, J.B., and Mock, P.M.: The potential of diamond and SiC electronic devices for microwave and millimeter-wave power applications. Proc. IEEE 79, 598 (1991).CrossRefGoogle Scholar
18.Thonke, K.: The boron acceptor in diamond. Semicond. Sci. Technol. 18, S20 (2003).CrossRefGoogle Scholar
19.Tumilty, N., Welch, J., Lang, R., Wort, C., Balmer, R., and Jackman, R.B.: An impedance spectroscopic investigation of the electrical properties of delta-doped diamond structures. J. Appl. Phys. 106, 103707 (2009).CrossRefGoogle Scholar
20.Iwashita, N., Swain, M.V., Field, J.S., Ohta, N., and Bitoh, S.: Elasto-plastic deformation of glass -like carbons heat-treated at different temperatures. Carbon 39, 1525 (2001).CrossRefGoogle Scholar
21.Baumann, P.K. and Nemanich, R.J.: Electron affinity and Schottky barrier height of metal–diamond (100), (111), and (110) interfaces. J. Appl. Phys. 83, 2072 (1998).CrossRefGoogle Scholar
22.Collins, A.T., Connor, A., Ly, C.H., Shareef, A., and Spear, P.M.: High-temperature annealing of optical centers in type-i diamond. J. Appl. Phys. 97, 083517 (2005).CrossRefGoogle Scholar
23.Collins, A.T. and Woods, G.S.: Cathodoluminescence from giant platelets, and of the 2.526 eV vibronic system, in type Ia diamonds. Philos. Mag. B 45, 385 (1982).CrossRefGoogle Scholar
24.Klein, P.B., Crossfield, M.D., Freitas, J.A. Jr., and Collins, A.T.: Donor-acceptor pair recombination in synthetic type-iib semiconducting diamond. Phys. Rev. B 51, 9634 (1995).CrossRefGoogle ScholarPubMed
25.Robins, L.H., Cook, L.P., Farabaugh, E.N., and Feldman, A.: Cathodoluminescence of defects in diamond films and particles grown by hot-filament chemical-vapor deposition. Phys. Rev. B 39, 13367 (1989).CrossRefGoogle ScholarPubMed
26.Kadri, M., Araujo, D., Wade, M., Deneuville, A., and Bustarret, E.: Effect of oxygen on the cathodoluminescence signal from excitons, impurities and structural defects in homoepitaxial (100) diamond films. Diamond Relat. Mater. 14, 566 (2005).CrossRefGoogle Scholar
27.Robins, L.H., Farabaugh, E.N., and Feldman, A.: Cathodoluminescence spectroscopy of free and bound excitons in chemical-vapor-deposited diamond. Phys. Rev. B 48, 14167 (1993).CrossRefGoogle ScholarPubMed
28.Sternschulte, H., Horseling, J., Albrecht, T., and Thonke, K.: Characterization of doped and undoped CVD-diamond films by cathodoluminescence. Diamond Relat. Mater. 5, 585 (1996).CrossRefGoogle Scholar
29.Takeuchi, D., Watanabe, H., Yamanaka, S., Okushi, H., Sawada, H., Ichinose, H., Sekiguchi, T., and Kajimura, K.: Origin of band-A emission in diamond thin films. Phys. Rev. B 63, 245328 (2001).CrossRefGoogle Scholar
30.Kawarada, H., Matsuyama, H., Yokota, Y., Sogi, T., Yamaguchi, A., and Hiraki, A.: Excitonic recombination radiation in undoped and boron-doped chemical-vapor-deposited diamonds. Phys. Rev. B 47, 3633 (1993).CrossRefGoogle ScholarPubMed
31.Kawarada, H., Yokota, Y., and Hiraki, A.: Intrinsic and extrinsic recombination radiation from undoped and boron-doped diamonds formed by plasma chemical vapor deposition. Appl. Phys. Lett. 57, 1889 (1990).CrossRefGoogle Scholar
32.Graham, R.J., Moustakas, T.D., and Disko, M.M.: Cathodoluminescence imaging of defects and impurities in diamond films grown by chemical vapor deposition. J. Appl. Phys. 69, 3212 (1991).CrossRefGoogle Scholar
33.Koizumi, S., Watanabe, K., Hasegawa, M., and Kanda, H.: Ultraviolet emission from a diamond pn junction. Science 292, 1899 (2001).CrossRefGoogle ScholarPubMed
34.Lawson, S.C., Kanda, H., Kiyota, H., Tsutsumi, T., and Kawarada, H.: Cathodoluminescence from high-pressure synthetic and chemical-vapor-deposited diamond. J. Appl. Phys. 77, 1729 (1995).CrossRefGoogle Scholar
35.Muret, P. and Wade, M.: Acceptor compensation by dislocations related defects in boron doped homoepitaxial diamond films from cathodoluminescence and Schottky diodes current-voltage characteristics. Phys. Status Solidi A 203, 3142 (2006).CrossRefGoogle Scholar
36.Baron, C., Deneuville, A., Wade, M., Jomard, F., and Chevallier, J.: Cathodoluminescence measurements on heavily boron doped homoepitaxial diamond films and their interfaces with their Ib substrates. Phys. Status Solidi A 203, 544 (2006).CrossRefGoogle Scholar
37.Kawarada, H., Yokota, Y., Mori, Y., Nishimura, K., and Hiraki, A.: Cathodoluminescence and electroluminescence of undoped and boron-doped diamond formed by plasma chemical vapor deposition. J. Appl. Phys. 67, 983 (1990).CrossRefGoogle Scholar
38.Dean, P.J.: Bound excitons and donor-acceptor pairs in natural and synthetic diamond. Phys. Rev. 139, A588 (1965).CrossRefGoogle Scholar
39.Ruan, J., Kobashi, K., and Choyke, W.J.: On the “band-A” emission and boron related luminescence in diamond. Appl. Phys. Lett. 60, 3138 (1992).CrossRefGoogle Scholar
40.Knight, D.S. and White, W.B.: Characterization of diamond films by Raman spectroscopy. J. Mater. Res. 4, 385 (1989).CrossRefGoogle Scholar
41.Nishimura, K., Das, K., and Glass, J.T.: Material and electrical characterization of polycrystalline boron-doped diamond films grown by microwave plasma chemical vapor deposition. J. Appl. Phys. 69, 3142 (1991).CrossRefGoogle Scholar
42.Mermoux, M., Jomard, F., Tavars, C., Omns, F., and Bustarret, E.: Raman characterization of boron-doped 111 homoepitaxial diamond layers. Diamond Relat. Mater. 15, 572 (2006).CrossRefGoogle Scholar
43.Mermoux, M., Marcus, B., Swain, G.M., and Butler, J.E.: A confocal Raman imaging study of an optically transparent boron-doped diamond electrode. J. Phys. Chem. B 106, 10816 (2002).CrossRefGoogle Scholar
44.Szunerits, S., Mermoux, M., Crisci, A., Marcus, B., Bouvier, P., Delabouglise, D., Petit, J.P., Janel, S., Boukherroub, R., and Tay, L.: Raman imaging and Kelvin probe microscopy for the examination of the heterogeneity of doping in polycrystalline boron-doped diamond electrodes. J. Phys. Chem. B 110, 23888 (2006).CrossRefGoogle ScholarPubMed
45.Bourgeois, E., Bustarret, E., Achatz, P., Omnes, F., and Blase, X.: Impurity dimers in superconducting B-doped diamond: Experiment and first-principles calculations. Phys. Rev. B 74, 094509 (2006).CrossRefGoogle Scholar
46.Goss, J.P. and Briddon, P.R.: Theory of boron aggregates in diamond: First-principles calculations. Phys. Rev. B 73, 085204 (2006).CrossRefGoogle Scholar
47.Ager, J.W. III, Walukiewicz, W., Mc Cluskey, M., Plano, M.A., and Landstrass, M.I.: Fano interference of the Raman phonon in heavily boron-doped diamond films grown by chemical vapor deposition. Appl. Phys. Lett. 66, 616 (1995).CrossRefGoogle Scholar
48.Gonon, P., Gheeraert, E., Deneuville, A., Fontaine, F., Abello, L., and Lucazeau, G.: Characterization of heavily B-doped polycrystalline diamond films using Raman spectroscopy and electron spin resonance. J. Appl. Phys. 78, 7059 (1995).CrossRefGoogle Scholar
49.Pruvost, F. and Deneuville, A.: Analysis of the Fano in diamond. Diamond Relat. Mater. 10, 531 (2001).CrossRefGoogle Scholar