Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-24T13:03:39.405Z Has data issue: false hasContentIssue false

Structural ceramics based on Si3N4–ZrO2(+ Y2O3) compositions

Published online by Cambridge University Press:  31 January 2011

B. I. Davis
Affiliation:
Rockwell International Science Center, Structural Ceramics Group, 1049 Camino Dos Rios, Thousand Oaks, California 91360
Get access

Abstract

An investigation was made of the effect of Y2O3 in solid solution in ZrO2 on the phases that are formed when ZrO2 is reacted with either N2 or Si3N4. The results suggest that the Zr–oxynitride phase can be predcluded as a reaction product when the Y2O3 content of the ZrO2 is ≥4 mol %. Dense Si3N4/ZrO2(+ Y2O3) composites were fabricated, which did not degrade during oxidation at temperatures %le; 1000°C. Severe degradation was observed for composites containing the Zr-oxynitride phase. The fracture toughness of the Si3N4/ZrO2(+ Y2O3) composites increased with ZrO2 content.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Rice, R. W. and McDonough, W. J., J. Am. Ceram. Soc. 58 (5–6), 264 (1975).CrossRefGoogle Scholar
2Vasilos, T., Cannon, R. M. Jr., and Wuensch, B. J., Final National Aeronautics and Space Administration Report No. NASA-CR-159585, 30 March 1979.Google Scholar
3Dutta, S. and Buzek, B., J. Am. Ceram. Soc. 67 (2), 89 (1984).Google Scholar
4Claussen, N., J. Am. Ceram. Soc. 59 (1–2), 49 (1976).Google Scholar
5Claussen, N. and Jahn, J., J. Am. Ceram. Soc. 61 (1–2), 94 (1978).Google Scholar
6Lange, F. F., J. Am. Ceram. Soc. 63 (1–2), 38 (1980).CrossRefGoogle Scholar
7Gilles, J. C., Bull. Soc. Chim. Fr. 22, 2118 (1962).Google Scholar
8Collongues, R., Gilles, J. C., Lejus, A. M., Jorba, M. Perez y, and Michel, D., Mater. Res. Bull. 2, 837 (1967).Google Scholar
9Lange, F. F. and Davis, B. I., J. Am. Ceram. Soc. 62 (1112), 629 (1979).Google Scholar
10Tendeloo, G. Van and Thomas, G., Acta Metall. 31, 1611 (1983).Google Scholar
11Tendeloo, G. Van, Anders, L., and Thomas, G., Acta Metall. 31, 1619 (1983).Google Scholar
12Porter, D. L. and Heuer, A. H., J. Am. Ceram. Soc. 60 (34), 183 (1977).Google Scholar
13Hannink, R. H. J., J. Mater. Sci. 13, 2497 (1978).Google Scholar
14Garvie, R. C., Hannink, R. H. J., and Pascow, R. T., Nature (London) 258, 703 (1977).CrossRefGoogle Scholar
15Gupta, T. K., Lange, F. F., and Bechtold, J. H., J. Mater. Sci. 13, 1464 (1978).Google Scholar
16Lange, F. F., J. Mater. Sci. 17, 225 (1982).Google Scholar
17Stubican, V. S., Corman, G. S., Hellmann, J. R., and Senft, G., in Advances in Ceramics, Science and Technology of Zirconia II, edited by Claussen, N., Ruhle, M., and Heuer, A. H. (American Ceramic Society, Columbus, OH, 1984), Vol. 12, pp. 96106.Google Scholar
18Scott, H. G., J. Mater. Sci. 10, 1527 (1975).Google Scholar
19Lange, F. F., Davis, B. I., and Wright, E., J. Am. Ceram. Soc. (to be published).Google Scholar
20Evans, A. G. and Charles, E. A., J. Am. Ceram. Soc. 59 (7–8), 371 (1976).CrossRefGoogle Scholar
21Lange, F. F., J. Am. Ceram. Soc. 65 (8), C120 (1982).Google Scholar
22Weiss, J., Gauckler, L. J., and Tien, T. Y., J. Am. Ceram. Soc. 62 (11/12), 632 (1979).Google Scholar
23Lange, F. F., J. Am. Ceram. Soc. 66 (12), 1369 (1983).Google Scholar
24Clarke, D. R., Ultramicroscopy 4 (1), 33 (1979).CrossRefGoogle Scholar
25Heur, A. H. and Ruhle, M., in Ref. 17, pp. 113.Google Scholar
26Gauckler, L. J., Lukas, H. L., and Petzow, G., J. Am. Ceram. Soc. 58 (7–8), 346 (1975).Google Scholar