Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T02:09:14.109Z Has data issue: false hasContentIssue false

Structural and microstructural features of pyrite FeS2−x thin films obtained by thermal sulfuration of iron

Published online by Cambridge University Press:  31 January 2011

C. de las Heras
Affiliation:
Departamento Física de Materiales (C-IV) and Instituto Nicolas Cabrera, Universidad Autónoma de Madrid, 28049-Madrid, Spain
J. L. Martín de Vidales
Affiliation:
Departamento (C-VI), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049-Madrid, Spain
I. J. Ferrer
Affiliation:
Departamento Física de Materiales (C-IV) and Instituto Nicolas Cabrera, Universidad Autónoma de Madrid, 28049-Madrid, Spain
C. Sánchez
Affiliation:
Departamento Física de Materiales (C-IV) and Instituto Nicolas Cabrera, Universidad Autónoma de Madrid, 28049-Madrid, Spain
Get access

Abstract

Structural and microstructural properties of synthetic thin films of pyrite (FeS2−x), prepared by thermal sulfuration of iron layers, were investigated from Rietveld refinements of x-ray diffraction data, collected by step/scan mode. From this refinement lattice constant, a, and sulfur position parameter, u, nearest neighbor Fe–S and S–S bond distances and tetrahedral and octahedral bond angles have been determined. Moreover, sulfur deficit in the samples, surface and volume-weighted crystallite size and microstrains were also obtained. From these data, the influence of temperature and time of sulfuration and sulfur pressure on their structural and microstructural properties has been established. Stoichiometric pyrite thin films are obtained by sulfurating the iron films at low temperatures (Ts ∼ 600–700 K) during short times (ts ∼ 0.5–2 h). These experimental conditions yield films with the highest a, u, Fe–S bond distance, and microstrains, as well as S/Fe ratios about 2.00, i.e., null sulfur vacancies, the smallest S–S bond distances, and crystallite size. Finally, the possible influence of these structural and microstructural characteristics on some physical properties (optical absorption, electrical resistivity …) of the films is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ennaoui, A., Fiechter, S., Pettenkofer, Ch., Alonso-Vante, N., Büker, K., Bronold, M., Höpfner, Ch., and Tributsch, H., Solar Energy Mater. Solar Cell 29, 289 (1993).CrossRefGoogle Scholar
2.Seehra, S. S., Montano, P. A., Seehra, M. S., and Sen, S. K., J. Mater. Sci. 14, 2761 (1979).Google Scholar
3.Karguppikar, A. M. and Vedeshwar, A. G., Phys. Status Solidi A 95, 717 (1986).CrossRefGoogle Scholar
4.Chatzitheodorou, G., Fiechter, S., Konenkamp, , Kunst, M., Jaegermann, W., and Tributsch, H., Mater. Res. Bull. XXI, 1481 (1986).Google Scholar
5.Smestad, G., Da Silva, A., Tributsch, H., Fiechter, S., Kunst, M., Mezziani, N., and Birkholz, M., Solar Energy Mater. 18, 299 (1989).CrossRefGoogle Scholar
6.Abass, A. K., Ahmed, Z. A., and Samuel, R. M.Phys. Status Solidi A 120, 247 (1990).Google Scholar
7.de las Heras, C. and Sánchez, C., Thin Solid Films 199, 259 (1991).Google Scholar
8.Höpfner, C., Ennaoui, A., Lichtenberger, D., Birkholz, M., Smestad, G., Fiechter, S., and Tributsch, H., Proc. 10th EEC PVSEC, Lisbon, 1991 (Kluwer, Dordrecht, The Netherlands, 1991), p. 594.Google Scholar
9.Willeke, G., Dasbach, R., Sailer, B., and Bucher, E., Thin Solid Films 213, 271 (1992).Google Scholar
10.Bausch, S., Sailer, B., Keppner, H., Willeke, G., Bucher, E., and Frommeyer, G., Appl. Phys. Lett. 57, 25 (1990).Google Scholar
11.Ferrer, I. J. and Sanchez, C., J. Appl. Phys. 70, 2641 (1991).Google Scholar
12.Pimenta, G. and Kautek, W., Thin Solid Films 238, 213 (1994);Google Scholar
Pimenta, G., Schröder, W., and Kautek, W., Ber. Bunsenges Phys. Chem. 95, 1470 (1991).Google Scholar
13.Smestad, G., Ennaoui, A., Fiechter, S., Tributsch, H., Höfmann, W. K., Birkholz, M., and Kautek, W., Solar Energy Mater. 20, 149 (1990).Google Scholar
14.Wyckoff, R. W. G., Crystal Structures (John Wiley & Sons Interscience Publishers, New York, 1963), Vol. 1.Google Scholar
15.Kraus, E. H. and Scott, I.D., Z. Kristallogr. 44, 153 (1908).Google Scholar
16.Juza, R., Biltz, W., and Meisel, K., Z. Anorg. Allg. Chem. 205, 273 (1932).Google Scholar
17.Anderson, C. T., J. Am. Chem. Soc. 59, 486 (1937).Google Scholar
18.Smith, F. G., Am. Mineral. 27, 1 (1942).Google Scholar
19.Birkholz, M., Fiechter, S., Hartmann, A., and Tributsch, H., Phys. Rev. B 43, 11926 (1991).Google Scholar
20.Fiechter, S., Birkholz, M., Hartman, A., Dulski, P., Giersig, M., Tributsch, H., and Tilley, R. J. D., J. Mater. Res. 7, 1829 (1992).Google Scholar
21.Sakthivel, A. and Young, R. A., User Guide to Programs DBWS-9006 and DBWS-9006PC for Rietveld Analysis of X-Ray and Neutron Powder Diffraction Patterns (School of Physics, Georgia Institute of Technology, Atlanta, 1991).Google Scholar
22.Caglioti, G., Paoletti, A., and Ricci, F. P., Nucl. Instrum. 3, 223 (1958).Google Scholar
23.Young, R. A. and Wiles, D. B., J. Appl. Crystallogr. 15, 430 (1982).Google Scholar
24.Post, J. E. and Bish, D. L., in Modern Powder Diffraction, edited by Bish, D. L. and Post, J.E. (The Mineralogical Society of America, Washington, DC 1989), Chap. 9.Google Scholar
25.The Rietveld Method, International Union of Crystallography, edited by R. A. Young (Oxford University Press, Oxford, 1993), 298 pp.Google Scholar
26.Klug, H. P. and Alexander, L. E., in X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials (John Wiley Interscience, New York, 1974), pp. 618708.Google Scholar
27.Warren, B. and Averbach, B. L., J. Appl. Phys. 21, 595 (1950).Google Scholar
28.Warren, B. E. and Averbach, B. L., J. Appl. Phys. 23, 1059 (1952).Google Scholar
29.Enzo, S., Fagherazzi, G., Benedetti, A., and Polizzi, S., J. Appl. Crystallogr. 21, 536 (1988).Google Scholar
30.Finklea, S. L., Cathey, L., and Amma, E. L., Acta Crystallogr. A 32, 529 (1976).Google Scholar
31.Stevens, S. L., de Lucia, M. L., and Coppens, P., Inorg. Chem. 19, 813 (1979).Google Scholar
32.Bayliss, P., Am. Mineral. 62, 1168 (1977).Google Scholar
33.Brostigen, G. and Kjekshus, A., Acta Chem. Scand. 24, 2993 (1970).Google Scholar
34.Will, G., Lauterjung, J., Schmitz, H., and Hinze, E., in High Pressure in Science and Technology, edited by Homan, C., MacCrone, R. K., and Whalley, E. (Mater. Res. Soc. Symp. Proc. 22, Elsevier Science Publishing, New York, 1984), p. 49.Google Scholar
35.Chrystall, R. S. B., Trans. Faraday Soc. 61, 1811 (1965).Google Scholar
36.Krishnan, R. S., Thermal Expansion of Crystals (Pergamon Press, New York, 1993).Google Scholar
37.Ferrer, I. J., de las Heras, C., and Sanchez, C., J. Phys. Cond. Matt. (in press).Google Scholar
38.Zeng, Y. and Holzwarth, N. A. W., Phys. Rev. B 50, 8214 (1994).Google Scholar
39.de las Heras, C., Ferrer, I.J., and Sanchez, C., unpublished.Google Scholar
40.de las Heras, C., Ferrer, I.J., and Sanchez, C., J. Appl. Phys. 74, 4551 (1993).Google Scholar
41.Abbas, A. K., Ahmed, Z. A., and Tahir, R. E., Phys. Status Solidi A 97, 243 (1986);CrossRefGoogle Scholar
Smestad, G., da Silva, A., Tributsch, H., Fiechter, S., Kunst, M., Mezziani, N., and Birkholz, M., Solar Energy Mater. 18, 299 (1989).Google Scholar