Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T23:48:00.688Z Has data issue: false hasContentIssue false

Structural and magnetic properties of random mixture graphite intercalation compounds

Published online by Cambridge University Press:  31 January 2011

Masatsugu Suzuki
Affiliation:
Department of Physics and Materials Research Center, State University of New York at Binghamton, Binghamton, New York 13901
Louis J. Santodonato
Affiliation:
Department of Physics and Materials Research Center, State University of New York at Binghamton, Binghamton, New York 13901
Mildred Yeh
Affiliation:
Department of Physics and Materials Research Center, State University of New York at Binghamton, Binghamton, New York 13901
Samuel M. Sampere
Affiliation:
Department of Physics and Materials Research Center, State University of New York at Binghamton, Binghamton, New York 13901
Andrew V. Smith
Affiliation:
Department of Physics and Materials Research Center, State University of New York at Binghamton, Binghamton, New York 13901
Charles R. Burr
Affiliation:
Department of Physics and Materials Research Center, State University of New York at Binghamton, Binghamton, New York 13901
Get access

Abstract

The structural and magnetic properties of the stage 2 CocNi1−cCl2- and COcFe1−cCl2-graphite intercalation compounds (GICs) for 0 ≤ c ≤ 1 have been studied by x-ray scattering and dc magnetic susceptibility. The stage 2 CocNi1−cCl2-GICs approximate two-dimensional randomly-mixed ferromagnets with XY spin symmetry. The average effective magnetic moment Peff, the Curie-Weiss temperature θ, and the paramagnetic-to-ferromagnetic phase transition temperature Tc have been determined as continuously varying functions of Co concentration c. They indicate that the Co2+ and Ni2+ spins are randomly distributed on the triangular lattice sites of each intercalate layer. They also show that the intraplanar exchange interaction J(Co–Ni) between the Co2+ and Ni2+ spins is enhanced and is larger than the interaction J(Co–Co) between two Co2+ spins and J(Ni–Ni) between two Ni2+ spins. This enhanced interaction, J(Co–Ni), can be expressed as J(Co–Ni) = 1.28 [J(Co–Co) · J(Ni–Ni)]1/2. The stage 2 CocFc1−cCl2-GICs approximate two-dimensional randomly mixed ferromagnets with competing spin anisotropy. The dc magnetic susceptibility results suggest that Co2+, Fe3+ rather than Fe2+ are distributed in the intercalate layer. The repeat distance along the c-axis (d-spacing) versus Co concentration deviates from Vegard's law which states that the d-spacing is proportional to Co concentration. The broad peak of d-spacing observed at c = 0.75 is discussed in terms of the double layer model developed by Jin and Mahanti.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Dresselhaus, M. S., Physics Today 37 (3), 60 (1984).CrossRefGoogle Scholar
2Dresselhaus, M. S., in Festkörperprobleme (Advances in Solid State Physics), edited by Grosse, P. (vieweg, Braunschweig, 1985), Vol. 25, p. 21.CrossRefGoogle Scholar
3Dresselhaus, M.S.,Synth. Met. 12, 5 (1985).CrossRefGoogle Scholar
4Zabel, H. and Chow, P. C., Comm. Cond. Mat. Phys. 12,225 (1986).Google Scholar
5Hérold, A., Furdin, G., Guérard, D., Hachim, L., Lelaurain, M., Nadi, N.E., and Vangelisti, R., Synth. Met. 12, 11 (1985).CrossRefGoogle Scholar
6Solin, S. A. and Zabel, H., Adv. Phys. 37, 87 (1988).CrossRefGoogle Scholar
7Suzuki, M., Oguro, I., and Jinzaki, Y., J. Phys. C 17, L575 (1984).CrossRefGoogle Scholar
8Rosenman, I., Batallan, F., Simon, Ch., and Hachim, L., J. Phys. 47, 1221 (1986).CrossRefGoogle Scholar
9Rancourt, D. G., Hun, B., and Flandrois, S., Ann. Phys. 11, Colloque n° 2, Supplement aut n° 2, 143 (1986).Google Scholar
10Yeh, M., Suzuki, M., and Burr, C. R., Phys. Rev. B 40, 1422 (1989).CrossRefGoogle Scholar
11Yeh, M., Santodonato, L. J., Smith, A., Suzuki, M., and Burr, C. R., to be submitted to Phys. Rev. B.Google Scholar
12Sampere, S. M., Santodonato, L. J., Suzuki, M., and Burr, C. R., in Graphite Intercalation Compounds: Science and Applications, edited by Endo, M., Dresselhaus, M.S., and Dresselhaus, G. Materials Research Society Extended Abstracts (MRS, Pittsburgh, PA, 1988), p. 81.Google Scholar
13Wong, P-Z., Horn, P.M., Birgeneau, R. J., Safina, C.R., and Shirane, G., Phys. Rev. Lett. 45, 1974 (1980).CrossRefGoogle Scholar
14Wong, P-Z., von Molnar, S., Palstra, T.T.M., Mydosh, J.A., Yoshizawa, H., Shapiro, S. M., and Ito, A., Phys. Rev. Lett. 55, 2043 (1985).CrossRefGoogle Scholar
15Karimov, Yu. S., Sov. Phys. JETP 39, 547 (1974).Google Scholar
16Karimov, Yu. S., Sov. Phys. JETP 41, 772 (1976).Google Scholar
17Suzuki, M. and Ikeda, H., J. Phys. C 14, L923 (1981).CrossRefGoogle Scholar
18Suzuki, M., Ikeda, H., and Endoh, Y., Synth. Met. 8, 43 (1983).CrossRefGoogle Scholar
19Suzuki, M., Ikeda, H., Murakami, Y., Matsuura, M., Suematsu, H., Nishitani, R., and Yoshizaki, R., J. Magn. Magn. Mater. 31–34, 1173 (1983).CrossRefGoogle Scholar
20Murakami, Y., Matsuura, M., Suzuki, M., and Ikeda, H., J. Magn. Magn. Mater. 31–34, 1171 (1983).CrossRefGoogle Scholar
21Suematsu, H., Nishitani, R., Yoshizaki, R., Suzuki, M., and Ikeda, II., J. Phys. Soc. Jpn. 52, 3874(1983).CrossRefGoogle Scholar
22Elahy, M., Shayegan, M., Szeto, K.Y., and Dresselhaus, G., Synth. Met. 8, 35 (1983).CrossRefGoogle Scholar
23Elahy, M. and Dresselhaus, G., Phys. Rev. B 30, 7225 (1984).CrossRefGoogle Scholar
24Szeto, K.Y., Chen, S.T., and Dresselhaus, G., Phys. Rev. B.32, 4628 (1985).CrossRefGoogle Scholar
25Matsuura, M., Murakami, Y., Takeda, K., Ikeda, H., and Suzuki, M., Synth. Met. 12, 427 (1985).CrossRefGoogle Scholar
26Ikeda, H., Endoh, Y., and Mitsuda, S., J. Phys. Soc. Jpn. 54, 3232 (1985).CrossRefGoogle Scholar
27Matsuura, M., Ann. Phys. 11, Colloquc n” 2, Supplement aut n° 2, 117 (1986).Google Scholar
28Wiesler, D.G., Suzuki, M., Zabcl, H., Shapiro, S.M., and Nicklow, R. M., Physica B 136, 22 (1986).Google Scholar
29Wiesler, D. G., Suzuki, M., Chow, P. C., and Zabel, H., Phys. Rev. B 34, 7951 (1986).CrossRefGoogle Scholar
30Suzuki, M., Wiesler, D. G., Chow, P. C., and Zabel, H., J. Magn. Magn. Mater. 54–57, 1275 (1986).CrossRefGoogle Scholar
31Wiesler, D.G., Suzuki, M., and Zabel, H., Phys. Rev. B 36, 7051 (1987).CrossRefGoogle Scholar
32Wiesler, D. G. and Zabel, H., Phys. Rev. B 36, 7303 (1987).CrossRefGoogle Scholar
33Rancourt, D. G., in Chemical Physics of Intercalation, edited by Legrand, A. P. and Flandrois, S. (Plenum Press, New York, 1987), p. 79.CrossRefGoogle Scholar
34Wiesler, D.G., Zabel, H., and Suzuki, M., Synth. Met. 23, 237 (1988).CrossRefGoogle Scholar
35Wong, P-Z., J. Cryst. Growth 58, 534 (1982).CrossRefGoogle Scholar
36Wertheim, G. K., Solid State Commun. 38, 633 (1981).CrossRefGoogle Scholar
37Hashimoto, T., J. Phys. Soc. Jpn. 18, 1140 (1963).CrossRefGoogle Scholar
38Ikeda, H., Abe, T., and Hatta, I., J. Phys. Soc. Jpn. 50, 1488 (1981).CrossRefGoogle Scholar
39Kostryukova, M. O., Sov. Phys. JETP 56, 1283 (1982).Google Scholar
40Pekalski, A., in Static Critical Phenomena in Inhomogeneous Systems, edited by Pekalski, A. and Sznajd, J., the XX Karpacz Winter School of Theoretical Physics (Springer-Verlag, Berlin,1984), p. 158.CrossRefGoogle Scholar
41Jin, W. and Mahanti, S. D., Phys. Rev. B 37, 8647 (1988).CrossRefGoogle Scholar